Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Eur J Cell Biol ; 103(4): 151451, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39217678

RESUMEN

The microenvironments of urinary systems play crucial roles in the development and metastasis of cancers due to their generation of complex temporal and spatial fluidic profiles. Because of their versatility in creating desired biomimetic flow, cone-and-plate bioreactors offer great potential for bladder cancer research. In this study, we construct a biocompatible cone-and-plate device coupled with a torque sensor, enabling the application and real-time monitoring of stable shear stress up to 50 dyne/cm². Under a stable shear stress stimulation at 12 dyne/cm2, bladder cancer cell BFTC-905 is arrested at the G1 phase with decreased cell proliferation after 24-hour treatment. This effect is associated with increased cyclin-dependent kinase inhibitors p21 and p27, inhibiting cyclin D1/CDK4 complex with dephosphorylation of serine 608 on the retinoblastoma protein. Consequently, an increase in cyclin D3 and decreases in cyclin A2 and cyclin E2 are observed. Moreover, we demonstrate that the shear stress stimulation upregulates the expression of autophagy-related proteins Beclin-1, LC3B-I and LC3B-II, while caspase cleavages are not activated under the same condition. The design of this system and its application shed new light on flow-induced phenomena in the study of urothelial carcinomas.

2.
J Appl Phys ; 112(10): 104506, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23258941

RESUMEN

Converting ambient thermal energy into electricity is of great interest in harvesting energy from the environment. Piezoelectric cantilevers have previously been shown to be an effective biosensor and a tool for elasticity mapping. Here we show that a single piezoelectric (lead-zirconate titanate (PZT)) layer cantilever can be used to convert heat to electricity through pyroelectric effect. Furthermore, piezoelectric-metal (PZT-Ti) bi-layer cantilever showed an enhanced induced voltage over the single PZT layer alone due to the additional piezoelectric effect. This type of device can be a way for converting heat energy into electricity.

3.
Mol Cell Biochem ; 344(1-2): 81-9, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20625798

RESUMEN

Restenosis is resulted from the proliferation and migration of vascular smooth muscle cells (VSMCs) from the arterial media into the intima within the vessel lumen following percutaneous transluminal coronary angioplasty (PTCA). OSU-03012, a synthetic compound (2-amino-N-{4-[5-(2-phenanthrenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]-phenyl} acetamide) acting as a PDK-1 inhibitor, is used as an apoptosis-promoting anticancer drug. However, whether OSU-03012 can inhibit VSMC proliferation and migration following PTCA remains unclear. In this study, we used A10 smooth muscle cells cultured in 10% FBS for stimulating proliferation and evaluated the inhibitory effects of OSU-03012 on cell proliferation and migration. The data demonstrated that OSU-03012 dose-dependently inhibited A10 cell proliferation examined by Trypan blue, MTT and morphological alteration assays, and inhibited the levels of proliferation-related proteins, proliferating cell nuclear antigen (PCNA), phosphorylated ERK examined by western blotting. Additionally, 10 µM OSU-03012 also enhanced apoptosis examined using DAPI assay by regulating apoptosis-related proteins. Furthermore, compared with the control group, A10 cells treated with 10 µM OSU-03012 showed a lower number of migrating cells examined by Boyden Chamber assay, and a dose-dependently reduced NFκB-dependent and interferon-stimulated response element (ISRE) promoter luciferase activities, implying the anti-migration and anti-inflammation effects of OSU03012. Taken together, this study provides insights into the pharmacological mechanisms of OSU-03012 in preventing smooth muscle cell proliferation, migration, and inflammation supporting the novel discovery of OSU-03012 as an adjuvant therapy for balloon injury-induced restenosis.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Músculo Liso Vascular/efectos de los fármacos , Pirazoles/farmacología , Sulfonamidas/farmacología , Animales , Apoptosis , Western Blotting , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Electroforesis en Gel de Poliacrilamida , Músculo Liso Vascular/citología , FN-kappa B/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA