Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 553
Filtrar
1.
Food Chem ; 463(Pt 4): 141390, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39362092

RESUMEN

The potential biological properties of protein hydrolysates have generated considerable research interest. This study was to hydrolyze black soybean protein (BSP) using five different commercial enzymes, and elucidate the influence of these enzymes on the structure and biological activities of the resulting hydrolysates. Enzymatic treatment changed secondary and tertiary structures of BSP, decreased particle size, α-helix and ß-sheet. Alcalase hydrolysate had the highest hydrolytic degree (29.84 %), absolute zeta potential (38.43 mV), the smallest particle (149.87 nm) and molecular weight (<3 kDa). In silico revealed alcalase hydrolysate had the strongest antioxidant potential. This finding was further validated through the lowest IC50 (mg/mL) in DPPH (2.67), ABTS (0.82), Fe2+ chelating (1.33) and·OH (1.12). Moreover, cellular antioxidant assays showed alcalase hydrolysate had the strongest cytoprotective effects on H2O2-induced PC12 cells. These results suggest BSPEHs, especially those prepared by alcalase, have potential as bioactive ingredients for nutrition, healthcare and food industry.

2.
Foods ; 13(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39272484

RESUMEN

With economic growth and improved living standards, the incidence of metabolic diseases such as diabetes mellitus caused by over-nutrition has risen sharply worldwide. Elevated blood glucose and complications in patients seriously affect the quality of life and increase the economic burden. There are limitations and side effects of current hypoglycemic drugs, while probiotics, which are safe, economical, and effective, have good application prospects in disease prevention and remodeling of intestinal microecological health and are gradually becoming a research hotspot for diabetes prevention and treatment, capable of lowering blood glucose and alleviating complications, among other things. Probiotic supplementation is a microbiologically based approach to the treatment of type 2 diabetes mellitus (T2DM), which can achieve anti-diabetic efficacy through the regulation of different tissues and metabolic pathways. In this study, we summarize recent findings that probiotic intake can achieve blood glucose regulation by modulating intestinal flora, decreasing chronic low-grade inflammation, modulating glucagon-like peptide-1 (GLP-1), decreasing oxidative stress, ameliorating insulin resistance, and increasing short-chain fatty acids (SCFAs) content. Moreover, the mechanism, application, development prospect, and challenges of probiotics regulating blood glucose were discussed to provide theoretical references and a guiding basis for the development of probiotic preparations and related functional foods regulating blood glucose.

3.
Food Res Int ; 195: 114991, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39277253

RESUMEN

Nowadays, with the diversification of nutritious and healthy foods, consumers are increasingly seeking clean-labeled products. High hydrostatic pressure (HHP) as a cold sterilization technology can effectively sterilize and inactivate enzymes, which is conducive to the production of high-quality and safe food products with extended shelf life. This technology reduces the addition of food additives and contributes to environmental protection. Moreover, HHP enhances the content and bioavailability of nutrients, reduces the anti-nutritional factors and the risk of food allergen concerns. Therefore, HHP is widely used in the processing of fruit and vegetable juice drinks, alcoholic, meat products and aquatic products, etc. A better understanding of the influence of HHP on food composition and applications can guide the development of food industry and contribute to the development of non-thermally processed and environmentally friendly foods.


Asunto(s)
Manipulación de Alimentos , Industria de Alimentos , Presión Hidrostática , Manipulación de Alimentos/métodos , Conservación de Alimentos/métodos , Análisis de los Alimentos , Valor Nutritivo , Esterilización/métodos , Humanos
4.
Artículo en Inglés | MEDLINE | ID: mdl-39242466

RESUMEN

Breast cancer (BC) is an important cause of cancer-related death in the world. As a subtype of BC with the worst prognosis, triple-negative breast cancer (TNBC) is a serious threat to human life and health. In recent years, there has been an increasing amount of research aimed at designing and developing nanomaterials for the diagnosis and treatment of TNBC. The purpose of this study was to comprehensively evaluate the current status and trend of the application of nanomaterials in TNBC through bibliometric analysis. Studies focusing on nanomaterials and cancer were searched from the Web of Science core collection (WOSCC) database, and relevant literature meeting the inclusion criteria was selected for inclusion in the study. VOSviewer and CiteSpace were used to perform bibliometric and visual analysis of the included publications. A total of 2338 studies were included. Annual publications have increased from 2010 to 2024. China, the United States and India were the leading countries in the field, accounting for 66.1%, 11.5% and 7.2% of publications, respectively. The Chinese Academy of Sciences and Li Yaping were the most influential institutions and authors, respectively. Journal of Controlled Release was considered the most productive journal. Cancer Research was considered to be the most co-cited journal. Drug delivery and anti-cancer mechanisms related to nanomaterials were considered to be the most widely studied aspects, and green synthesis and anti-cancer mechanisms were also recent research hotspots. In this study, the characteristics of publications were summarized, and the most influential countries, institutions, authors, journals, hot spots and trends in the application of nanomaterials in cancer were identified. These findings provide valuable insights into the current state and future direction of this dynamic field.

5.
Artículo en Inglés | MEDLINE | ID: mdl-39254769

RESUMEN

BACKGROUND: Double-negative T (DNT) cells comprise a distinct subset of T lymphocytes that have been implicated in immune responses. The aim of this study was to characterize the peripheral DNT population in breast cancer (BC) patients. METHODS: DNT cells were isolated from the peripheral blood samples of BC patients and healthy controls by flow cytometry. The sorted DNT cells were analyzed by the Smart-seq2 for single-cell full-length transcriptome profiling. The differentially expressed genes (DEGs) between the BC and control groups were screened and functionally annotated by Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses using R. The protein-protein interaction (PPI) network of the DEGs was constructed using the CytoHubba and MCODE plug-in of Cytoscape software to identify the core genes. Survival status, DNA methylation level, immune infiltration and immune checkpoint expression were analyzed using Kaplan-Meier Plotter, UALCAN, MethSeuvr, TIMER, and TISIDB respectively. The sequencing results were verified by RT-qPCR. RESULT: The percentage of DNT cells was higher in the BC patients compared to healthy controls. We identified 289 DEGs between the DNT populations of both groups. GO and KEGG pathway analyses revealed that the DEGs were mainly related to immunoglobulin mediated immune response, complement activation, and B cell receptor signaling. The PPI networks of the common DEGs were constructed using Cytoscape, and 10 core genes were identified, including TMEM176B, C1QB, C1QC, RASD2, and IFIT3. The expression levels of these genes correlated with the prognosis and immune infiltration in BC patients, and were validated by RT-qPCR (P < 0.05). CONCLUSIONS: DNT cells are abundant in patients with BC, and might exert anti-tumor immune responses by regulating genes such as TMEM176B and EGR1.

6.
J Food Sci ; 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39302226

RESUMEN

Rice is commonly utilized as a wheat bread substitute due to its low allergenicity. However, rice bread faces challenges in processing efficiency and the formation of a cohesive gel network structure, resulting in suboptimal taste Hence, this study compared four improvers-trypsin, whey protein (WPC), hydroxypropyl methyl cellulose (HPMC), and molecularly distilled monoglycerides (GMSs). The impacts of the four improvers on the processing attributes of rice dough were comprehensively assessed across fermentation, moisture content analysis, rheology, heat stability, and pasting characteristics. The findings indicated that the incorporation of trypsin, HPMC, and WPC resulted in 107%, 61%, and 1% increases in gas production of fermented rice dough, respectively, while reducing the regrowth values to 564.00 ± 7.21, 176.67 ± 0.58, and 611.00 ± 3.61 cP. Notably, the air-holding capacity of HPMC-fermented rice dough exhibited a 7% enhancement. All four types of improvers raised the enthalpy of melting (ΔH) and the difference in melting point (ΔT) of fermented rice doughs, with trypsin enhancing ΔH by 44% and ΔT by 40%. GMS, HPMC, and WPC increased the degree of water incorporation in fermented doughs. This study could serve as a benchmark for enhancing the fermentation attributes of rice dough and establish a groundwork for the future advancement of gluten-free dietary options. PRACTICAL APPLICATION: The thorough analysis conducted in this experiment provides a theoretical framework for rice dough preparation during the fermentation process, addressing the dietary needs of individuals with coeliac disease and those following a gluten-free diet. This study also paves the way for the development of improved gluten-free rice products in future research pursuits.

7.
Small ; : e2404879, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101287

RESUMEN

Traditional ethylene carbonate (EC)-based electrolytes constrain the applications of silicon carbon (Si-C) anodes under fast-charging and low-temperature conditions due to sluggish Li+ migration kinetics and unstable solid electrolyte interphase (SEI). Herein, inspired by the efficient water purification and soil stabilization of aquatic plants, a stable SEI with a 3D desolvation interface is designed with gel polymer electrolyte (GPE), accelerating Li+ desolvation and migration at the interface and within stable SEI. As demonstrated by theoretical simulations and experiment results, the resulting poly(1,3-dioxolane) (PDOL), prepared by in situ ring-opening polymerization of 1,3-dioxolane (DOL), creates a 3D desolvation area, improving the Li+ desolvation at the interface and yielding an amorphous GPE with a high Li+ ionic conductivity (5.73 mS cm-1). Furthermore, more anions participate in the solvated structure, forming an anion-derived stable SEI and improving Li+ transport through SEI. Consequently, the Si-C anode achieves excellent rate performance with GPE at room temperature (RT) and low temperature (-40 °C). The pouch full cell coupled with LiFePO4 cathode obtains 97.42 mAh g-1 after 500 cycles at 5 C/5 C. This innovatively designed 3D desolvation interface and SEI represent significant breakthroughs for developing fast-charging and low-temperature batteries.

8.
Food Chem ; 461: 140796, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39153371

RESUMEN

In order to delay the retrogradation of rice starch, the effects of three different chain length fatty acids (lauric acid, myristic acid and palmitic acid) on rice starch were studied. The fatty acids with longer carbon chains had strong steric hindrance and hydrophobicity, which formed a more compact structure in the helical cavity of amylose, and significantly reduced degree of expansion, migration of water, short-range ordered structure, number of double helical structures and crystallinity. These structural changes endowed the rice starch-long chain fatty acid complexes with better gel viscosity, liquid fluidity and thermal stability than in the rice starch-short chain fatty acid complexes. The results showed that fatty acids with longer chain length inhibited the retrogradation of rice starch, most obviously when 5% palmitic acid was added. This study provides an important reference for the processing of rice starch-based foods.


Asunto(s)
Ácidos Grasos , Oryza , Almidón , Oryza/química , Almidón/química , Ácidos Grasos/química , Viscosidad , Interacciones Hidrofóbicas e Hidrofílicas
9.
Allergy Asthma Immunol Res ; 16(4): 399-421, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39155739

RESUMEN

PURPOSE: Asthma, an airway inflammatory disease, involves multiple tumor necrosis factors (TNF). TNF ligand superfamily member 11 (TNFSF11) and its known receptor, TNF receptor superfamily 11A (TNFRSF11A), has been implicated in asthma; however, the related mechanisms remain unknown. METHODS: The serum and bronchial airway of patients with asthma and healthy subjects were examined. The air-liquid interface of primary human bronchial epithelial (HBE) cells, and Tnfsf11+/- mouse, Tnfrsf11a+/- mouse, and a humanized HSC-NOG-EXL mouse model were established. This study constructed short hairpin RNA (shRNA) of TNFSF11, TNFRSF11A, transforming growth factor ß1 (TGFß1), and transforming growth factor ß receptor type 1 (TGFßR1) using lentivirus to further examine the ability of TNFSF11 protein. RESULTS: This study was the first to uncover TNFSF11 overexpression in the airway and serum of asthmatic human subjects, and the TNFSF11 in serum was closely correlated with lung function. The TNFSF11/TNFRSF11A axis deficiency in Tnfsf11+/- or Tnfrsf11a+/- mice remarkably attenuated the house dust mite (HDM)-induced signal transducer and activator of transcription 3 (STAT3) action and remodeling protein expression. Similarly, the HDM-induced STAT3 action and remodeling protein expression in HBE cells decreased after pretreatment with TNFSF11 or TNFRSF11A shRNA. Meanwhile, the expression of the remodeling proteins induced by TNFSF11 significantly decreased after pretreatment with-stattic (inhibitor of STAT3 phosphorylation) in HBE cells. The STAT3 phosphorylation and remodeling protein expression induced by TNFSF11 obviously decreased after pretreatment with TGFß1 or TGFßR1 shRNA in HBE cells. The above results also verified that blocking TNFSF11 with denosumab alleviated airway remodeling via the TGFß1/STAT3 signaling in the humanized HSC-NOG-EXL mice with HDM-induced asthma. CONCLUSIONS: TGFß1/STAT3 action was closely correlated with TNFSF11/TNFRSF11A axis-mediated airway remodeling. This study presented a novel strategy that blocks the TNFSF11/TNFRSF11A axis to exert a protective effect against asthma.

10.
Nat Prod Res ; : 1-10, 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39155512

RESUMEN

With the intention of advancing our research on diverse C-20 derivatives of camptothecin (CPT), 38 CPT derivatives bearing sulphonamide and sulfonylurea chemical scaffolds and different substituent groups have been designed, synthesised and evaluated in vitro for cytotoxicity against four tumour cell lines, A-549 (lung carcinoma), KB (nasopharyngeal carcinoma), MDA-MB-231 (triple-negative breast cancer) and KBvin (an MDR KB subiline). As a result, all the synthesised compounds showed promising in vitro cytotoxic activity against the four cancer cell lines tested, and were more potent than irinotecan. Importantly, compounds 12b, 12f, 12j and 13 l possessed better antiproliferative activity against all tested tumour cell lines with IC50 values of 0.0118 - 0.5478 µM, and resulted approximately 3 to 4 times more cytotoxic than topotecan against multidrug-resistant KBvin subline. Convincing evidences are achieved that incorporation of sulphonamide and sulfonylurea motifs into position-20 of camptothecin confers markedly enhanced cytotoxic activity against cancer cell lines.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA