Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Chromatogr A ; 1707: 464282, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37597480

RESUMEN

In this study, enzyme-deep eutectic solvent-assisted ultrasonic extraction technique (EnDUE) was developed for the efficient dissolution of flavonoids from Artemisiae Argyi Folium. The extraction results of Artemisiae Argyi Folium flavonoids (quercetin, luteolin, and isorhamnetin) were used as indicators to investigate the influencing factors through single factor experiment, Placket-burman design, and Box-behnken design, so as to obtain satisfactory yields. After systematic optimization, the optimal conditions for extraction of the target flavonoids were: Choline chloride/1,4-butanediol with a water content of 25%, cellulase+pectinase with a concentration of 1.6%, solid-liquid ratio of 1/32 g/mL, pH of 4.2, ultrasonic frequency of 80 kHz, ultrasonic power of 160 W, ultrasonic temperature of 40 °C, and ultrasonic time of 25 min, respectively, which derived a total yield of 8.06 ± 0.29 mg/g. Compared with the reference techniques, the proposed EnDUE technique showed significant advantages in the yield and extraction efficiency of flavonoids. In addition, after preliminary purification, the Artemisiae Argyi Folium flavonoids showed good antioxidant activity. Deep eutectic solvent (DES) can degrade the cell wall components and increase the action site of enzyme, and enzyme can promote the penetration of DES into the cell wall matrix, which is mutually beneficial to the dissolution of intracellular components. Therefore, the extraction technique proposed in this work (EnDUE) greatly promotes the dissolution of flavonoids from Artemisiae Argyi Folium, and provides theoretical support for the further application of plant flavonoids.


Asunto(s)
Flavonoides , Ultrasonido , Disolventes Eutécticos Profundos , Solubilidad , Butileno Glicoles
3.
Front Cardiovasc Med ; 9: 951463, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36172578

RESUMEN

Accumulating evidence indicates that long non-coding RNAs (lncRNAs) contribute to myocardial ischemia/reperfusion (I/R) injury. However, the underlying mechanisms by which lncRNAs modulate myocardial I/R injury have not been thoroughly examined and require further investigation. A novel lncRNA named lncRNA-hypoxia/reoxygenation (H/R)-associated transcript (lncRNA-HRAT) was identified by RNA sequencing analysis. The expression of lncRNA-HRAT exhibited a significant increase in the I/R mice hearts and cardiomyocytes treated with H/R. LncRNA-HRAT overexpression facilitates H/R-induced cardiomyocyte apoptosis. Furthermore, cardiomyocyte-specific deficiency of lncRNA-HRAT in vivo after I/R decreased creatine kinase (CK) release in the serum, reduced myocardial infarct area, and improved cardiac dysfunction. Molecular mechanistic investigations revealed that lncRNA-HRAT serves as a competing endogenous RNA (ceRNA) of miR-370-3p, thus upregulating the expression of ring finger protein 41 (RNF41), thereby aggravating apoptosis in cardiomyocytes induced by H/R. This study revealed that the lncRNA-HRAT/miR-370-3p/RNF41 pathway regulates cardiomyocyte apoptosis and myocardial injury. These findings suggest that targeted inhibition of lncRNA-HRAT may offer a novel therapeutic method to prevent myocardial I/R injury.

4.
Environ Sci Pollut Res Int ; 29(18): 27294-27310, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34981399

RESUMEN

Recently, the safety of drinking water sources along Yangtze River Basin is received much attention. But few works have carried out large-scale and all-round safety assessment of drinking water sources on the main stream of the whole Yangtze River Basin. In this work, 97 drinking water sources in 8 provinces of the main stream of the Yangtze River were selected as the objects to clarify the spatial distribution of the safety risk levels of drinking water sources in the whole basin and analyze the causes of drinking water source risks. The results showed that 13.4%, 55.7%, 25.8%, 5.1%, and 0% of the 97 drinking water sources were classified as low, moderate, considerate, high, and very high respectively, according to the safety risk level. This indicated that the safety risk of drinking water sources in the mainstream of Yangtze River is generally low, but there are also a number of high safety risk drinking water sources. And the safety risk degree of the lower and upper reaches in the mainstream of Yangtze River is generally higher than that of the middle reaches. The current situation of drinking water sources along the mainstream of Yangtze River could be attributed to the superposition of human activities and natural background factors. This study could contribute to the government's targeted management and control of safety risk sources for drinking water sources along the Yangtze River Basin.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , China , Agua Potable/análisis , Monitoreo del Ambiente , Humanos , Medición de Riesgo , Ríos , Contaminantes Químicos del Agua/análisis
5.
Biochem Biophys Res Commun ; 530(1): 314-321, 2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32828305

RESUMEN

Myocardial ischemia/reperfusion (I/R) injury is a clinically fatal disease, caused by restoring myocardial blood supply after a period of ischemia or hypoxia. However, the underlying mechanism remains unclear. Recently, increasing evidence reveal that microRNAs (miRs) participate in myocardial I/R injury. This study aimed to investigate whether miR-128-1-5p contributed to cardiomyocyte apoptosis induced by myocardial I/R injury. Here, we showed that the expression of miR-128-1-5p was decreased in mice following myocardial I/R injury. Down-regulation of miR-128-1-5p was also showed in H9c2 cardiomyocytes after hypoxia/reoxygenation (H/R), and in neonatal rat cardiomyocytes (NRCMs) with H2O2 treatment. Importantly, we found that overexpression of miR-128-1-5p ameliorates cardiomyocyte apoptosis both in H9c2 cardiomyocytes and NRCMs. Moreover, we also found that growth arrest DNA damage-inducible gene 45 gamma (Gadd45g) is identified as a direct target of miR-128-1-5p, which negatively regulated Gadd45g expression. Additionally, silencing of Gadd45g inhibits cardiomyocyte apoptosis in H9c2 cardiomyocytes and NRCMs. These results reveal a novel mechanism by which miR-128-1-5p regulates Gadd45g-mediated cardiomyocyte apoptosis in myocardial I/R injury.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/genética , MicroARNs/genética , Daño por Reperfusión Miocárdica/genética , Animales , Apoptosis , Línea Celular , Modelos Animales de Enfermedad , Regulación hacia Abajo , Humanos , Masculino , Ratones Endogámicos C57BL , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratas , Transducción de Señal , Regulación hacia Arriba , Proteinas GADD45
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA