Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 11(29): e2401794, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38828719

RESUMEN

The development of neuromorphic optoelectronic systems opens up the possibility of the next generation of artificial vision. In this work, the novel broadband (from 365 to 940 nm) and multilevel storage optoelectronic synaptic thin-film transistor (TFT) arrays are reported using the photosensitive conjugated polymer (poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(bithiophene)], F8T2) sorted semiconducting single-walled carbon nanotubes (sc-SWCNTs) as channel materials. The broadband synaptic responses are inherited to absorption from both photosensitive F8T2 and sorted sc-SWCNTs, and the excellent optoelectronic synaptic behaviors with 200 linearly increasing conductance states and long retention time > 103 s are attributed to the superior charge trapping at the AlOx dielectric layer grown by atomic layer deposition. Furthermore, the synaptic TFTs can achieve IOn/IOff ratios up to 106 and optoelectronic synaptic plasticity with the low power consumption (59 aJ per single pulse), which can simulate not only basic biological synaptic functions but also optical write and electrical erase, multilevel storage, and image recognition. Further, a novel Spiking Neural Network algorithm based on hardware characteristics is designed for the recognition task of Caltech 101 dataset and multiple features of the images are successfully extracted with higher accuracy (97.92%) of the recognition task from the multi-frequency curves of the optoelectronic synaptic devices.

2.
Plant Physiol Biochem ; 206: 108311, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38169227

RESUMEN

The grain yield of crops is determined by the synergistic interaction between source activity and sink capacity. However, source-sink interactions are far from being fully understood of peanut. Therefore, a 2-year field study (2018-2019) was conducted to compare differences in photosynthetic characteristics, carbon and nitrogen metabolism, and yield and quality of different source-sink peanut varieties. Four representative source-sink types were examined: JH5 (source-sink coordination type), SH9 (sufficient source-large sink type), ZH24 (sufficient source-few sink type), and HY36 (large source-few sink type). The results showed that the photosynthetic potential of HY36 was higher than that of the other varieties after flowering because of a large source (leaves), whereas the chlorophyll content and net photosynthetic rate of HY36 were significantly lower than those of JH5 and ZH24. Proportions of dry matter transferred to pods were significantly different among four source-sink peanut varieties. From 50 days after flowering, the dry matter distribution ratio of pods exceeded that of stems and leaves in JH5, significantly earlier than other varieties, which prolong the duration of pod-filling period, followed by SH9 and ZH24. The activities of nitrate reductase, glutamine synthetase, glutamate dehydrogenase, and glutamate synthase in JH5 were the highest among the varieties, and thus, the highest protein content was also in JH5. The activities of sucrose synthase and sucrose phosphate synthase in ZH24 were significantly higher than those in HY36. The highest oil content was also in ZH24. Among pod sink characteristics and yield, SH9 had the longest flowering period and the highest gynophore formation rate but the lowest pod-bearing rate, and the effective proportion and pod fullness were also lower than those of other varieties. The highest pod rate was in ZH24. The effective proportion and pod fullness of JH5 were higher than those of the other varieties, and its yield was also the highest, followed by SH9 and ZH24, with the lowest yield in HY36. The obtained results indicate that the source-sink coordinated variety had high Pn and chlorophyll content in the late growth stage, a long functional period of leaves, and a high proportion of assimilates transported to pods, thus promoting effective proportions and pod fullness to improve peanut yield and protein content, suggesting that different cultivation and management measures should select for different peanut varieties to best coordinate the relationship between the source and sink.


Asunto(s)
Arachis , Carbono , Arachis/metabolismo , Fotosíntesis/fisiología , Clorofila/metabolismo , Nitrógeno
3.
Commun Chem ; 6(1): 271, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38081929

RESUMEN

Amorphous porous organic polymers (aPOPs) are a type of highly crosslinked polymers. These polymers are generally constructed from rigid organic building blocks, which have become an important subclass of POPs with diverse applications. In the early stage of development, a wide range of carbon-based building blocks and network forming chemistry afforded a large library of aPOPs with rich structures and properties. Recently, implanting main group elements with diverse geometric structures and electronic configurations into aPOPs has proven to be a useful tool to fine-tune the structures and properties of these polymers. Herein, we outline the recent advances in the field of main group (MG)-aPOPs where main-group elements either played unique roles in tuning the structures and properties of MG-aPOPs, or offered new strategies in the synthesis of MG-aPOPs. Furthermore, this Review discusses various challenges remaining in the field from the perspectives of synthetic strategies and characterization techniques, and presents some specific studies that may potentially address the challenges.

4.
J Org Chem ; 88(19): 13678-13685, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37691267

RESUMEN

Chemical structure tunability of organic π-conjugated molecules (OCMs) is highly appealing for fine-tuning the optoelectronic properties. Herein, we report a new series of carbazole-functionalized diazaphosphepines (DPP-CBZs) via one-pot phosphorus-nitrogen (P-N) chemistry. The one-pot synthesis harnessed the mild and selective P-N chemistry that successively installed carbazole moieties and seven-membered heterocycles at one P-center. Single-crystal structure studies revealed the tweezer-like structures for 1PO, 2PO, and 3PO that maintained the intramolecular donor-acceptor interactions between [d]-aryl moieties and carbazole. DPP-CBZs exhibited a more twisted central-diazaphosphepine ring compared with the reference molecules (1-3MO without carbazole group). DPP-CBZs with strong electron-accepting [d]-Ars generally showed lower photoluminescence quantum yields (PLQYs) than those of the reference molecules, which is probably due to the intramolecular charge transfer (ICT) from electron-donating carbazole to electron-withdrawing [d]-Ars. Upon the oxidation of the P-centers, PLQYs of DPP-CBZs increased. Furthermore, photophysical studies and theoretical studies suggested that the carbazole group had a strong impact on the structures of DPP-CBZs. As a proof of concept, we showed that grinding the mixture of 1PO as the electron-donating tweezer and benzene-1,2,4,5-tetracarbonitrile (BzCN) as the electron acceptor induced the formation of the CT complex.

5.
Ying Yong Sheng Tai Xue Bao ; 33(9): 2422-2430, 2022 Sep.
Artículo en Chino | MEDLINE | ID: mdl-36131658

RESUMEN

Using peanut cultivar Huayu 25 and cotton cultivar Liaomian 19 as experimental material, we examined the effects of different intercropping patterns on physiological characteristics of peanut in later growth stage, yield and economic benefit, based on an experiment with five treatments, including intercropping modes of 4 rows peanut and 4 rows cotton (H4M4), 6 rows peanut and 4 rows cotton (H6M4), 4 rows peanut and 4 rows cotton (H4M2), sole peanut (DH) and sole cotton (DM). The results showed that intercropping mode increased the length of main stem and branches of peanut, but decreased green leaves number of main steam, leaf area index, and total dry matter accumulation. Among the intercropping modes, chlorophyll content, chlorophyll fluorescence parameters, root vigor, nitrate reductase activity under H6M4 and H4M2 were significantly higher than that under H4M4, as well as higher superoxide dismutase, peroxidase, catalase activity and decreased malondialdehyde content. Intercropping significantly reduced peanut and cotton yields, but enhanced the gross economic output value. The yield reduction of H6M4 was the lowest and the economic output was the highest among all the intercropping modes. In addition, the land equivalent ratio of H6M4 was greater than 1, indicating the obvious advantage of intercropping. Our results indicated that appropriate reduction of the ratio of cotton under the peanut-cotton intercropping systems could strengthen root vigor and increased nitrate reductase activity, promote nutrient absorption capacity, reduce senescence, and increase the economic output.


Asunto(s)
Agricultura , Arachis , Agricultura/métodos , Catalasa , Clorofila , Gossypium , Malondialdehído , Nitrato Reductasas , Vapor , Superóxido Dismutasa
6.
PLoS One ; 17(2): e0263539, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35120189

RESUMEN

Icy bridge deck in winter has tremendous consequences for expressway traffic safety, which is closely related to the bridge pavement temperature. In this paper, the critical meteorological conditions of icy bridge deck were predicted by multiple linear regression and BP neural network respectively. Firstly, the main parameters affecting the bridge pavement temperature were determined by Pearson partial correlation analysis based on the three-year winter meteorological data of the traffic meteorological monitoring station on the bridge in Shandong province. Secondly, the bridge pavement temperature is selected as the dependent variable, while air temperature, wind speed, relative humidity, dew point temperature, wet bulb temperature and wind cold temperature were selected as independent variables, and the bridge pavement temperature prediction models of linear regression and 5-layer hidden layer classical BP neural network regression were established respectively based on whether the variables are linear or not. Finally, the prediction accuracy of the above models was compared by using the measured data. The results show that the linear regression model could be established only with air temperature, relative humidity and wind speed, owing to collinearity problem. Compared with multiple linear regression model, the predicted value of the BP neural network has a higher degree of fitting with the measured data, and the coefficient of determination reaches 0.7929. Using multiple linear regression and BP neural network, the critical meteorological conditions of bridge deck icing in winter can be effectively predicted even when the sample size is insufficient.


Asunto(s)
Hielo , Redes Neurales de la Computación , Contaminantes Atmosféricos/análisis , China , Frío , Monitoreo del Ambiente/métodos , Modelos Lineales , Conceptos Meteorológicos , Meteorología , Presión , Análisis de Regresión , Seguridad , Tiempo (Meteorología) , Viento
7.
J Environ Manage ; 306: 114468, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35026711

RESUMEN

The sustainable development of agriculture has been challenged by the decline of soil quality and the change of climate. It is well known that soil carbon (C) sequestration plays crucial roles in improving soil structural stability, mitigating greenhouse emissions, and promoting plant nutrient supply. Therefore, a 3-year field experiment was conducted to evaluate the effects of different residue and tillage management practices on soil C sequestration in a wheat-peanut rotation system. Four treatments were studied: moldboard plow tillage with wheat residue returning (PTS), rotary tillage with wheat residue returning (RTS), no tillage with wheat residue mulching (NTS), and no tillage with wheat residue removal (NT). Our results indicated that residue return favored the improvement of soil C sequestration capacity relative to residue removal. In addition, NTS improved soil C sequestration in the surface soil layer (0-5 cm), but markedly reduced soil C sequestration in the deeper soil layers (5-30 cm). NTS thus caused a more obvious soil stratification phenomenon, which was not conducive to improving soil quality. At the 5-30 cm soil depths, the soil labile organic C fractions concentrations, carbon pool management index (CPMI), macroaggregates-associated C storage, intra-aggregate C fractions concentrations, and soil total organic carbon (TOC) storage under PTS were all higher than those under other treatments. Overall, a peanut strategic cultivation management mode that combines moldboard plow tillage and wheat residue return may be used as a reference for optimizing agricultural soil management to achieve the improvement of soil C sequestration capacity in a wheat-peanut rotation system.


Asunto(s)
Secuestro de Carbono , Suelo , Agricultura , Arachis , Carbono/análisis , China , Triticum
8.
Environ Sci Pollut Res Int ; 29(15): 22531-22546, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34792777

RESUMEN

Over the last century, anthropogenic greenhouse-gas (GHG) emissions have changed the global climate, and agriculture plays an important role in the global flux of GHG. Agricultural management practices, such as split N applications and the use of controlled-release fertilisers have significantly increased the crop yield and N-use efficiency by balancing the N demand of crops and the N availability of soils. However, the impacts of these practices on GHG emissions (in particular in wheat-peanut relay intercropping systems) have not been evaluated in detail. In this study, a common compound fertiliser and a controlled release compound fertiliser (CRF) were used the day prior to sowing, at the jointing stage of wheat and at the peanut anthesis stage in ratios of 50-50-0% (JCF100), 35-35-30% (JCF70) and 35-35-30% (JCRF70), with a control treatment of 0 kg ha-1. The findings demonstrated that treatment JCF70 achieved increases in yields of 9.7% and 14.6% for wheat grain and peanut pod, respectively, compared to treatment JCF100; however, this treatment also significantly increased soil emissions of CO2 and N2O. In addition, cumulative emissions of CO2 and N2O were higher in the peanut growing season by 74.4 and 31.7%, respectively, than in the wheat growing season owing to the relatively higher soil temperature during the former season. Fertilisation combined with irrigation, was found to be the main cause of GHG emissions. Under the same fertiliser rate and N-management style, JCRF70 further increased the yield of peanut pods and the total combined yield of peanut and wheat by 10.3% and 8.9%, respectively, compared to treatment JCF70. The cumulative CO2 and N2O emissions in treatment JCRF70 were 20.4-45.4% less than those in treatment JCF70. The total global warming potentials of CO2 and N2O were lowest in treatment JCRF70 owing to it providing the highest grain yield. Therefore, N application with three splits, together with the use of a slow-release fertiliser, may be a simple and effective approach to enhance the grain yield whilst reducing the GHG emissions.


Asunto(s)
Fertilizantes , Gases de Efecto Invernadero , Agricultura , Arachis , China , Fertilizantes/análisis , Gases de Efecto Invernadero/análisis , Óxido Nitroso/análisis , Suelo , Triticum
9.
PLoS One ; 16(12): e0261975, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34969049

RESUMEN

Under adverse weather conditions, visibility and the available pavement friction are reduced. The improper selection of speed on curved road sections leads to an unreasonable distribution of longitudinal and lateral friction, which is likely to cause rear-end collisions and lateral instability accidents. This study considers the combined braking and turning maneuvers to obtain the permitted vehicle speed under rainy conditions. First, a braking distance computation model was established by simplifying the relationship curve between brake pedal force, vehicle braking deceleration, and braking time. Different from the visibility commonly used in the meteorological field, this paper defines "driver's sight distance based on real road scenarios" as a threshold to measure the longitudinal safety of the vehicle. Furthermore, the lateral friction and rollover margin is defined to characterize the vehicle's lateral stability. The corresponding relationship between rainfall intensity-water film thickness-road friction is established to better predict the safe speed based on the information issued by the weather station. It should be noted that since the road friction factor of the wet pavement not only determined the safe vehicle speed but also be determined by the vehicle speed, so we adopt Ferrari's method to solve the quartic equation about permitted vehicle speed. Finally, the braking and turning maneuvers are considered comprehensively based on the principle of friction ellipse. The results of the TruckSim simulation show that for a single-unit truck, running at the computed permitted speed, both lateral and longitudinal stability meet the requirements. The proposed permitted vehicle speed model on horizontal curves can provide driving guidance for drivers on curves under rainy weather or as a decision-making basis for road managers.


Asunto(s)
Accidentes de Tránsito , Conducción de Automóvil , Desaceleración , Vehículos a Motor , Lluvia , Seguridad , Aceleración , Simulación por Computador , Ingeniería/métodos , Planificación Ambiental , Fricción , Humanos , Tiempo (Meteorología)
10.
PLoS One ; 16(7): e0252767, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34214083

RESUMEN

The water film depth is a key variable that affects traffic safety under rainfall conditions. According to the Federal Highway Administration, approximately 5700 people are killed and more than 544 700 people are injured in crashes on wet pavements annually. While several studies have attempted to address water film depth issues by establishing prediction models, a few focused on the relationship among road geometric features, capacity of drainage facilities and water film depth. To ascertain the influence of the geometric features of road and facility drainage capacities on the water film depth, the road geometry features were first classified into four types, and the facility drainage capacities were considered from three aspects in this study. Furthermore, the concept of short-time rainfall grade was proposed according to the results of the field test. Finally, the theoretical prediction model for the water film depth was conceived, based on the geometric features of road and facility drainage capacities with different rainfall intensities. Compared with the traditional regression prediction models, the theoretical prediction model clearly shows the effects of the geometric features of road and facility drainage capacities. When the road drainage facilities have no drainage capacity, the water film depth increases rapidly with the rainfall intensity. This model can be used to predict the water film depth of road surfaces on rainy days, evaluate the effect of rainfall on the driving environment, and provide guidance for determining safety control measures on rainy days.


Asunto(s)
Agua , Accidentes de Tránsito , Conducción de Automóvil , Planificación Ambiental , Lluvia , Seguridad
11.
Ying Yong Sheng Tai Xue Bao ; 32(3): 951-958, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33754561

RESUMEN

To solve the problem of uncoordinated source-sink relationship that limits the increase of peanut yield, we investigated the regulating effects of ethephon on the formation of source-sink in cultivar Shanhua 9 by spraying at 10, 20, and 30 d after anthesis in a field experiment. The results showed that spraying ethephon at 10 d and 20 d after anthesis significantly reduced the number of flowers, pegs and young pods, but increased the number of immature pods and mature pods. Spraying at 30 d after anthesis did not affect the number of flowers, pegs and young pods. Spraying ethephon could improve the leaf area per plant. Spraying at 10 d after anthesis achieved the highest leaf area per plant and the increment amplitude decreased with the delay of spraying stage. Spraying ethephon at 10 d and 20 d after anthesis significantly improved the photosynthetic performance of peanut, whereas spraying at 30 days after anthesis increased the photosynthesis only in the short-term and had no effect at late growth period. In terms of the comprehensive characters of source and sink, spraying ethephon at 20 d after anthesis achieved the most harmonious source-sink relationship, which could promote the transport of photosynthate to pods and increase the economic pods ratio, pod fullness, and the yield. Therefore, spraying ethephon is an effective practice to solve the problems of "more flowers but less pegs" and "more pods but less kernels" in peanut. The optimum spraying stage of ethephon to regulate flowering should be at 20 d after anthesis.


Asunto(s)
Arachis , Fotosíntesis , Compuestos Organofosforados/farmacología , Hojas de la Planta
12.
Genome Biol ; 21(1): 78, 2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-32213191

RESUMEN

BACKGROUND: AsCas12a and LbCas12a nucleases are reported to be promising tools for genome engineering with protospacer adjacent motif (PAM) TTTV as the optimal. However, the C-containing PAM (CTTV, TCTV, TTCV, etc.) recognition by Cas12a might induce extra off-target edits at these non-canonical PAM sites. RESULTS: Here, we identify a novel Cas12a nuclease CeCas12a from Coprococcus eutactus, which is a programmable nuclease with genome-editing efficiencies comparable to AsCas12a and LbCas12a in human cells. Moreover, CeCas12a is revealed to be more stringent for PAM recognition in vitro and in vivo followed by very low off-target editing rates in cells. Notably, CeCas12a renders less off-target edits located at C-containing PAM at multiple sites compared to LbCas12a and AsCas12a, as assessed by targeted sequencing methods. CONCLUSIONS: Our study shows that CeCas12a nuclease is active in human cells and the stringency of PAM recognition could be an important factor shaping off-target editing in gene editing. Thus, CeCas12a provides a promising candidate with distinctive characteristics for research and therapeutic applications.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Endodesoxirribonucleasas/metabolismo , Edición Génica , Butyrivibrio fibrisolvens/enzimología , Clostridiales/enzimología , Humanos
13.
Int J Mol Sci ; 20(23)2019 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-31775346

RESUMEN

Staphylococcus aureus strains produce a unique family of immunostimulatory exotoxins termed as bacterial superantigens (SAgs), which cross-link major histocompatibility complex class II (MHC II) molecule and T-cell receptor (TCR) to stimulate large numbers of T cells at extremely low concentrations. SAgs are associated with food poisoning and toxic shock syndrome. To date, 26 genetically distinct staphylococcal SAgs have been reported. This study reports the first X-ray structure of newly characterized staphylococcal enterotoxin N (SEN). SEN possesses the classical two domain architecture that includes an N-terminal oligonucleotide-binding fold and a C-terminal ß-grasp domain. Amino acid and structure alignments revealed that several critical amino acids that are proposed to be responsible for MHC II and TCR molecule engagements are variable in SEN, suggesting that SEN may adopt a different binding mode to its cellular receptors. This work helps better understand the mechanisms of action of SAgs.


Asunto(s)
Enterotoxinas/química , Enterotoxinas/metabolismo , Antígenos de Histocompatibilidad Clase II/metabolismo , Conformación Proteica , Receptores de Antígenos de Linfocitos T/metabolismo , Staphylococcus aureus/metabolismo , Superantígenos/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Antígenos de Histocompatibilidad Clase II/química , Humanos , Modelos Moleculares , Receptores de Antígenos de Linfocitos T/química , Homología de Secuencia , Superantígenos/química
14.
Environ Sci Pollut Res Int ; 26(35): 35497-35508, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31410827

RESUMEN

Lipids produced from agricultural and industrial residues using oleaginous microorganisms for use as biofuels are attracting the attention of researchers due to their environmental benefits. However, low efficiencies and high costs limit their application to a certain extent. The present study is the first to use inositol as an enhancer to improve the production and accumulation of lipids during fermentation by the microalga Schizochytrium sp. SR21. The study aimed to maximize the production of lipids and docosahexaenoic acid (DHA) by optimizing the conditions of inositol addition into the fermentation medium. The corresponding key enzyme and metabolite profiles of SR21 were evaluated. The results indicated that the addition of 120 mg L-1 of inositol to the medium at 48 h improved lipid and DHA production by 13.90 and 20.82%, resulting in total concentrations of 22.86 and 8.53 g/L, respectively. Moreover, the ratio of unsaturated fatty acids (UFAs) to saturated fatty acids (SFAs) increased by 23.38% and is consistent with the results of the metabolomic analysis. The activity of enzymes (i.e., PC, G6PDH, NADPH-ME, and ACL) related to fatty acid synthesis in strain SR21 also increased significantly (43.38%, 28.68%, 37.47%, and 19.87%, respectively). Metabolomic analysis also showed that inositol promoted lipid synthesis in SR21 and significantly increased the relative proportion of UFAs by affecting the citrate cycle and SFA and UFA metabolic pathways. Thus, inositol is an ideal enhancer of lipid production and accumulation by oleaginous microorganisms. Graphical abstract.


Asunto(s)
Ácidos Docosahexaenoicos/química , Ácidos Grasos Insaturados/metabolismo , Ácidos Grasos/metabolismo , Inositol/química , Estramenopilos/metabolismo , Biocombustibles , Ácidos Grasos/química , Ácidos Grasos Insaturados/química , Fermentación , Metabolómica/métodos , Estramenopilos/química
15.
Int J Pharm ; 564: 153-161, 2019 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-30981874

RESUMEN

It is essential to optimize a carrier of dry powder inhalation (DPI) for the aerodynamic deposition in vitro to achieve pulmonary delivery of drug molecules in vivo. In this study, neutralized nanoporous γ-cyclodextrin metal-organic framework (CD-MOF) crystals with cubic morphology and uniform inhalation size were developed and modified as a DPI carrier for budesonide (BUD). Cholesterol (CHO) and leucine (LEU)-poloxamer were used to modify the CD-MOF powder for the improvement of flowability and particle aerodynamic behaviour, for which the particle size distribution, Carr's index and in vitro pulmonary deposition were assessed. Compared to CD-MOF or LEU-CD-MOF-BUD, CHO-CD-MOF had a superior mass median aerodynamic diameter (4.35 ±â€¯0.04 µm) and inhalable performance (fine particle fraction of 30.60 ±â€¯0.76%), which were maintained after budesonide loading (4.47 ±â€¯0.30 µm, 24.95 ±â€¯4.33%). The crystallinity, cytotoxicity and in vivo deposition of drug loaded samples (CHO-CD-MOF-BUD) were then investigated by powder X-ray diffraction (PXRD), cell viability study, in vivo fluorescence imaging and pharmacokinetic studies in rats. The characteristic PXRD crystallinity peaks of budesonide disappeared after being loaded into CHO-CD-MOF, potentially indicating the molecular incorporation of budesonide into the pores of CD-MOF. The cell viability of A549 cell was more than 90% for CHO-CD-MOF-BUD as a result of the good biocompatibility of CD-MOF. When Rhodamine B was carried by the DPI particles, the fluorescence signal at the lung tissue was markedly improved after cholesterol modification compared with CD-MOF, whilst the bioavailability of CHO-CD-MOF-BUD in rat was equivalent with that of the commercial product of Pulmicort Turbuhaler. Therefore, the CD-MOF powders modified by cholesterol can be used as a promising inhalable carrier for pulmonary delivery of drugs with small dose.


Asunto(s)
Broncodilatadores/administración & dosificación , Budesonida/administración & dosificación , Colesterol/administración & dosificación , Ciclodextrinas/administración & dosificación , Hidróxidos/administración & dosificación , Leucina/administración & dosificación , Compuestos de Potasio/administración & dosificación , Administración por Inhalación , Animales , Broncodilatadores/química , Broncodilatadores/farmacocinética , Budesonida/química , Budesonida/farmacocinética , Colesterol/química , Colesterol/farmacocinética , Ciclodextrinas/química , Ciclodextrinas/farmacocinética , Hidróxidos/química , Hidróxidos/farmacocinética , Leucina/química , Leucina/farmacocinética , Masculino , Nanoporos , Compuestos de Potasio/química , Compuestos de Potasio/farmacocinética , Ratas Sprague-Dawley
16.
Front Plant Sci ; 10: 86, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30792727

RESUMEN

Better management of N fertilizer is essential for improving crop productivity. Wheat (Triticum aestivum L.)-peanut (Arachis hypogaea L.) relay intercropping rotation systems are a mainstay of the measures to improve the economic and food security situation in China. Therefore, a 2-year field study (2015-2017) was conducted to evaluate the effect of different N fertilizer management regimes on the photosynthetic characteristics and uptake and translocation of N in peanut in the wheat-peanut rotation system. We used common compound fertilizer (CCF) and controlled-release compound fertilizer (CRF) at the same N-P2O5-K2O proportion (The contents of N, P2O5, and K2O in the two kinds of fertilizer were 20, 15, and 10%, respectively.). The fertilizer was applied on the day before sowing, at the jointing stage or the flag leaf stage of winter wheat, and at the initial flowering stage of peanut in various proportions, with 0 kg N ha-1 as the control. Results showed that split applications of N significantly increased leaf area index (LAI) and chlorophyll content and improved photosynthetic rate, thus increasing the pod yield of peanut. Topdressing N at the jointing stage (S1) or at the flag leaf stage of wheat (S2) and supplying part of the N at the initial flowering stage of peanut increased pod yield. Withholding N until the flag leaf stage (S2) did not negatively affect wheat grain yield; however, it increased N accumulation in each organ and N allocation proportions in the peanut pod, ultimately improving pod yield. With the same N-P2O5-K2O proportion and equivalent amounts of nutrient, CRF can decreased malondialdehyde (MDA) and maintain a relatively high LAI and chlorophyll content at the late growth stage of peanut, prolong the functional period of peanut leaves and delay leaf senescence, resulting in an increase of pod yield over that with CCF. At S1, CRF resulted in a better pod yield than CCF by 9.4%, and at S2 it was 12.6% higher. In summary, applying N fertilizer in three splits and delaying the topdressing fertilization until the flag leaf stage of winter wheat increases total grain yields of wheat and peanut. This method could therefore be an appropriate N management strategy for wheat-peanut relay intercropping rotation systems in China.

17.
Med Sci Monit ; 24: 6756-6764, 2018 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-30250016

RESUMEN

BACKGROUND Computed tomography perfusion imaging (CTPI) and perfusion-weighted imaging (PWI) are non-invasive technologies that can quantify tumor vascularity and blood flow. This study explored the blood flow information, tumor cell viability, and hydrothoraces in a rabbit pleural VX2-implanted model through use of CTPI, PWI, and DWI. MATERIAL AND METHODS A pleural VX2-implanted model was established in 58 New Zealand white rabbits. CTPI, PWI, and DWI were applied with a 16-slice spiral CT and an Archival 1.5 T dual-gradient MRI. RESULTS Compared with muscle tissue, PV, PEI, and BV of parietal and visceral pleural tumor implantation rabbits showed significant differences. The t values of PV, PEI, and BV between parietal and visceral pleura were 2.08, 2.29, and 2.88, respectively. Compared with muscle tissue, WIR, WOR, and MAXR of parietal and visceral pleural tumor implantation rabbits showed significant differences. In parietal pleural tumor implantation rabbits, the section surface of lesion tissues was 5.2±2.7 cm². Hydrothorax appeared 6.0±2.0 days after tumor implantation. The mean value of ADC was 1.5±0.6. In visceral pleural tumor implantation rabbits, the section surface of lesion tissues was 1.6±0.8 cm². Hydrothorax appeared 7.0±3.0 days after tumor implantation. The mean value of ADC was 1.4±0.5. The t values of the above 3 indices for the parietal and visceral pleura were 1.85, 1.83, and 1.76, respectively (P<0.05). CONCLUSIONS The combined application of CTPI, PWI, and DWI accurately and visually reflects the blood perfusion of tumor tissues and quantitatively analyzes blood flow information and the mechanism underlying hydrothorax generation in tumor tissues.


Asunto(s)
Carcinoma de Células Escamosas/diagnóstico por imagen , Neoplasias/diagnóstico por imagen , Neoplasias Pleurales/diagnóstico por imagen , Animales , Imagen de Difusión por Resonancia Magnética/métodos , Modelos Animales de Enfermedad , Imagen por Resonancia Magnética/métodos , Imagen de Perfusión/métodos , Conejos , Tomografía Computarizada por Rayos X/métodos
19.
Chin J Cancer Res ; 26(5): 532-42, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25400418

RESUMEN

OBJECTIVE: To detect the activity of tumor cells and tumor blood flow before and after the radiotherapy of implanted pulmonary VX-2 carcinoma in rabbit models by using magnetic resonance diffusion-weighted imaging (MR-DWI) and magnetic resonance perfusion weighted imaging (MR-PWI), and to evaluate the effectiveness and safety of the radiotherapy based on the changes in the MR-DWI and MR-PWI parameters at different treatment stages. METHODS: A total of 56 rabbit models with implanted pulmonary VX-2 carcinoma were established, and then equally divided into treatment group and control group. MR-DWI and MR-PWI were separately performed using a Philips Acheiva 1.5T MRI machine (Philips, Netherland). MRI image processing was performed using special perfusion software and the WORKSPACE advanced workstation for MRI. MR-DWI was applied for the observation of tumor signals and the measurement of apparent diffusion coefficient (ADC) values; whereas MR-PWI was used for the measurement of wash in rate (WIR), wash out rate (WOR), and maximum enhancement rate (MER). The radiation treatment was performed using Siemens PRIMUS linear accelerator. In the treatment group, the radiotherapy was performed 21 days later on a once weekly dosage of 1,000 cGy to yield a total dosage of 5,000 cGy. RESULTS: THE ADC PARAMETERS IN THE REGION OF INTEREST ON DWI WERE AS FOLLOWS: on the treatment day for the implanted pulmonary VX-2 carcinoma, the t values at the center and the edge of the lesions were 1.352 and 1.461 in the treatment group and control group (P>0.05). During weeks 0-1 after treatment, the t values at the center and the edge of the lesions were 1.336 and 1.137 (P>0.05). During weeks 1-2, the t values were 1.731 and 1.736 (P<0.05). During weeks 2-3, the t values were 1.742 and 1.749 (P<0.05). During weeks 3-4, the t values were 2.050 and 2.127 (P<0.05). During weeks 4-5, the t values were 2.764 and 2.985 (P<0.05). The ADC values in the treatment group were significantly higher than in the control group. After the radiotherapy (5,000 cGy), the tumors remarkably shrank, along with low signal on DWI, decreased signal on ADC map, and remarkably increased ADC values. As shown on PWI, on the treatment day for the implanted pulmonary VX-2 carcinoma, the t values of the WIR, WOR, and MER at the center of the lesions were 1.05, 1.31, and 1.33 in the treatment group and control group (P>0.05); in addition, the t values of the WIR, WOR, and MER at the edge of the lesions were 1.35, 1.07, and 1.51 (P>0.05). During weeks 0-1 after treatment, the t values of the WIR, WOR, and MER at the center of the lesions were 1.821, 1.856, and 1.931 (P<0.05); in addition, the t values of the WIR, WOR, and MER at the edge of the lesions were 1.799, 2.016, and 2.137 (P<0.05). During weeks 1-1 after treatment, the t values of the WIR, WOR, and MER at the center of the lesions were 2.574, 2.156, and 2.059 (P<0.05) and the t values of the WIR, WOR, and MER at the edge of the lesions were 1.869, 2.058, and 2.057 (P<0.05). During weeks 2-3 after treatment, the t values of the WIR, WOR, and MER at the center of the lesions were 2.461, 2.098, and 2.739 (P<0.05) and the t values of the WIR, WOR, and MER at the edge of the lesions were 2.951, 2.625, and 2.154 (P<0.05). During weeks 3-4 after treatment, the t values of the WIR, WOR, and MER at the center of the lesions were 2.584, 2.107, and 2.869 (P<0.05) and the t values of the WIR, WOR, and MER at the edge of the lesions were 2.057, 2.637, and 2.951 (P<0.05). During weeks 4-5 after treatment, the t values of the WIR, WOR, and MER at the center of the lesions were 2.894, 2.827, and 3.285 (P<0.05) and the t values of the WIR, WOR, and MER at the edge of the lesions were 3.45, 3.246, and 3.614 (P<0.05). After the radiotherapy (500 cGy), the tumors shrank on the T1WI, WIR, WOR, and MER; meanwhile, the PWI parameter gradually decreased and reached its minimum value. CONCLUSIONS: MR-DWI and MR-PWI can accurately and directly reflect the inactivation of tumor cells and the tumor hemodynamics in rabbit models with implanted pulmonary VX-2 carcinoma, and thus provide theoretical evidences for judging the clinical effectiveness of radiotherapy for the squamous cell carcinoma of the lung.

20.
Onco Targets Ther ; 6: 685-92, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23836981

RESUMEN

BACKGROUND: This study used CT (computed tomography) and magnetic resonance imaging (MRI) to identify correlations between perfusion parameters for squamous cell lung carcinoma and tumor angiogenesis in a rabbit model of VX2 lung cancer. METHODS: VX2 tumors were implanted in the lungs of 35 New Zealand White rabbits. CT and MRI perfusion scanning were performed on days 14, 17, 21, 25, and 28 after tumor implantation. CT perfusion parameters were perfusion, peak enhanced increment, transit time peak, and blood volume, and MRI perfusion parameters were wash in rate, wash out rate, maximum enhancement rate, and transit time peak. CT and MRI perfusion parameters were obtained at the tumor rim, in the tumor tissue, and in the muscle tissue surrounding the tumor. RESULTS: On CT perfusion imaging, t values for perfusion, peak enhanced increment, and blood volume (tumor rim versus muscle) were 16.31, 11.79, and 5.21, respectively (P < 0.01); t values for perfusion, peak enhanced increment, and blood volume (tumor versus muscle) were 9.87, 4.09, and 5.35, respectively (P < 0.01); and t values for transit time peak were 1.52 (tumor rim versus muscle) and 1.29 (tumor versus muscle), respectively (P > 0.05). On MRI perfusion imaging, t values for wash in rate, wash out rate, and maximum enhancement rate (tumor rim versus muscle) were 18.14, 8.79, and 6.02, respectively (P < 0.01); t values for muscle wash in rate, wash out rate, and maximum enhancement rate (tumor versus muscle) were 9.45, 8.23, and 4.21, respectively (P < 0.01); and t values for transit time peak were 1.21 (tumor rim versus muscle) and 1.05 (tumor versus muscle), respectively (P > 0.05). CONCLUSION: A combination of CT and MRI perfusion imaging demonstrated hemodynamic changes in a rabbit model of VX2 lung cancer, and provides a theoretical foundation for treatment of human squamous cell lung carcinoma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA