Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
BMC Genomics ; 25(1): 637, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926663

RESUMEN

Dynamic metabolic reprogramming occurs at different stages of myogenesis and contributes to the fate determination of skeletal muscle satellite cells (MuSCs). Accumulating evidence suggests that mutations in myostatin (MSTN) have a vital role in regulating muscle energy metabolism. Here, we explored the metabolic reprogramming in MuSCs and myotube cells in MSTN and FGF5 dual-gene edited sheep models prepared previously, and also focused on the metabolic alterations during myogenic differentiation of MuSCs. Our study revealed that the pathways of nucleotide metabolism, pantothenate and CoA biosynthesis were weakened, while the unsaturated fatty acids biosynthesis were strengthened during myogenic differentiation of sheep MuSCs. The MSTN and FGF5 dual-gene editing mainly inhibited nucleotide metabolism and biosynthesis of unsaturated fatty acids in sheep MuSCs, reduced the number of lipid droplets in per satellite cell, and promoted the pentose phosphate pathway, and the interconversion of pentose and glucuronate. The MSTN and FGF5 dual-gene editing also resulted in the inhibition of nucleotide metabolism and TCA cycle pathway in differentiated myotube cells. The differential metabolites we identified can be characterized as biomarkers of different cellular states, and providing a new reference for MSTN and FGF5 dual-gene editing in regulation of muscle development. It may also provide a reference for the development of muscle regeneration drugs targeting biomarkers.


Asunto(s)
Factor 5 de Crecimiento de Fibroblastos , Edición Génica , Desarrollo de Músculos , Miostatina , Animales , Miostatina/genética , Miostatina/metabolismo , Desarrollo de Músculos/genética , Ovinos , Factor 5 de Crecimiento de Fibroblastos/genética , Factor 5 de Crecimiento de Fibroblastos/metabolismo , Diferenciación Celular , Células Satélite del Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/citología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/citología
2.
Neurol Sci ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38831166

RESUMEN

OBJECTIVE: Identify the genotype and clinical characteristics of mitochondrial epilepsy caused by nDNA mutations in Chinese children and explore the treatment and prognosis of the condition. STUDY DESIGN: This is a retrospective cohort study conducted at a single center, including patients diagnosed with an established nDNA mutation-associated primary mitochondrial disease between October 2012 and March 2023 who also met the practical clinical definition of epilepsy published by the ILAE in 2014. RESULTS: Of the 58 patients identified, 74.1% had an onset before the age of 1 year and 63.8% had seizures as their initial symptom. Developmental and epileptic encephalopathy (DEE) (31%) are the most common phenotypes. The most frequently observed MRI abnormalities include abnormal signal asymmetry in the bilateral basal ganglia and/or brainstem (34.7%), as well as brain atrophy, myelin sheath dysplasia, and corpus callosum dysplasia (32.7%). Of the 40 patients followed, seizure treatment was effective in 18 of the cases, while it was ineffective in 22. The mitochondrial DNA depletion syndrome (MDS) was found to be more difficult to control seizures than other phenotypes (P < 0.05). Additionally, the MDS was associated with a significantly higher mortality rate compared to alternative phenotypes (P < 0.05). CONCLUSIONS: The onset of mitochondrial epilepsy due to nDNA mutations is early and seizures are the most common initial symptom. DEE is the most common phenotype. Characteristic MRI abnormalities in the brain may be helpful in the diagnosis of primary mitochondrial disease. People with MDS typically face challenges in seizure control and have a poor prognosis.

3.
Pharmaceuticals (Basel) ; 17(6)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38931332

RESUMEN

The circulatory system is a closed conduit system throughout the body and consists of two parts as follows: the cardiovascular system and the lymphatic system. Hematological malignancies usually grow and multiply in the circulatory system, directly or indirectly affecting its function. These malignancies include multiple myeloma, leukemia, and lymphoma. O-linked ß-N-acetylglucosamine (O-GlcNAc) transferase (OGT) regulates the function and stability of substrate proteins through O-GlcNAc modification. Abnormally expressed OGT is strongly associated with tumorigenesis, including hematological malignancies, colorectal cancer, liver cancer, breast cancer, and prostate cancer. In cells, OGT can assemble with a variety of proteins to form complexes to exercise related biological functions, such as OGT/HCF-1, OGT/TET, NSL, and then regulate glucose metabolism, gene transcription, cell proliferation, and other biological processes, thus affecting the development of hematological malignancies. This review summarizes the complexes involved in the assembly of OGT in cells and the role of related OGT complexes in hematological malignancies. Unraveling the complex network regulated by the OGT complex will facilitate a better understanding of hematologic malignancy development and progression.

4.
Cells ; 13(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38891117

RESUMEN

Fibroblast growth factor 5 (FGF5) plays key roles in promoting the transition from the anagen to catagen during the hair follicle cycle. The sheep serves as an excellent model for studying hair growth and is frequently utilized in various research processes related to human skin diseases. We used the CRISPR/Cas9 system to generate four FGF5-edited Dorper sheep and only low levels of FGF5 were detected in the edited sheep. The density of fine wool in GE sheep was markedly increased, and the proportion of fine wool with a diameter of 14.4-20.0 µm was significantly higher. The proliferation signal in the skin of gene-edited (GE) sheep was stronger than in wild-type (WT) sheep. FGF5 editing decreased cortisol concentration in the skin, further activated the activity of antioxidant enzymes such as Glutathione peroxidase (GSH-Px), and regulated the expression of Wnt signaling pathways containing Wnt agonists (Rspondins, Rspos) and antagonists (Notum) in hair regeneration. We suggest that FGF5 not only mediates the activation of antioxidant pathways by cortisol, which constitutes a highly coordinated microenvironment in hair follicle cells, but also influences key signals of the Wnt pathway to regulate secondary hair follicle (SHF) development. Overall, our findings here demonstrate that FGF5 plays a significant role in regulating SHF growth in sheep and potentially serves as a molecular marker of fine wool growth in sheep breeding.


Asunto(s)
Factor 5 de Crecimiento de Fibroblastos , Glutatión Peroxidasa , Folículo Piloso , Vía de Señalización Wnt , Lana , Animales , Factor 5 de Crecimiento de Fibroblastos/metabolismo , Factor 5 de Crecimiento de Fibroblastos/genética , Ovinos , Lana/metabolismo , Folículo Piloso/metabolismo , Folículo Piloso/crecimiento & desarrollo , Glutatión Peroxidasa/metabolismo , Glutatión Peroxidasa/genética , Edición Génica , Hidrocortisona/metabolismo , Proliferación Celular , Sistemas CRISPR-Cas/genética
5.
Front Neurol ; 15: 1375615, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660089

RESUMEN

Object: The purpose of this study was to evaluate the risk of secondary immune thrombocytopenia in multiple sclerosis patients treated with alemtuzumab through a meta-analysis. Methods: We searched databases including PubMed, Web of Science, OVID and EMBASE for studies reporting changes in platelet levels in MS patients treated with alemtuzumab from their inception until May 2023 and performed a meta-analysis. Information and data were screened and extracted by two researchers. The inclusion and exclusion criteria were established according to the PICOS principle. The obtained data were analyzed using the R software meta package and the quality assessment was conducted using Newcastle-Ottawa Scale (NOS). The causes of heterogeneity were analyzed using subgroup analysis and sensitivity analysis. Publication bias was evaluated using funnel plots and Egger test. Results: A total of 15 studies were included, encompassing 1,729 multiple sclerosis patients. Meta-analysis of overall secondary ITP in the included studies yielded a pooled rate of 0.0243. The overall incidence of secondary autoimmune events was 0.2589. In addition, subgroup analysis was applied using study regions and study types. The results showed that the incidence rate of secondary ITP in Europe was about 0.0207, while the incidence of autoimmune events (AEs) was 0.2158. The incidence rate of secondary ITP and AEs in North America was significantly higher than in Europe, being 0.0352 and 0.2622. And the analysis showed that the incidence rates of secondary ITP and AEs in prospective studies were 0.0391 and 0.1771. Retrospective studies had an incidence rate of secondary ITP at 2.16, and an incidence rate of AEs at 0.2743. Conclusion: This study found that there was a certain incidence of Immune thrombocytopenia in multiple sclerosis patients after treatment with alemtuzumab. Alemtuzumab may have some interference with platelet levels, and the mechanism may be associated with Treg cells. But due to the absence of a control group in the included literature, we cannot determine the specific impact of Alemtuzumab on platelet levels in patients with MS. Therefore, clinical physicians should perform a comprehensive assessment of the patient's benefit-to-risk ratio before initiating alemtuzumab. Systematic Review Registration: Inplasy website, DOI number is 10.37766/inplasy2024.3.0007.

6.
Stem Cell Res ; 76: 103346, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387170

RESUMEN

NAD(P)HX dehydratase (NAXD) gene is one of the key enzymes encoding the nicotinamide nucleotide repair system, reportedly associated with Encephalopathy, progressive, early-onset, with brain edema and/or leukoencephalopathy, 2 (PEBEL2). Here, we generated an induced pluripotent stem cell (iPSC) line from the dermal fibroblasts (HDFs) of a PEBEL2 patient who carried biallelic mutations, c.101_102delTA(p.Thr35Phefs*63) and c.318C > G (p.Ile160Met) in NAXD. These iPSCs showed stable amplification in vitro, expressed pluripotent markers, and differentiated spontaneously into three germ layers, as well as NAXD mutations with normal karyotype.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Nucleótidos/metabolismo , Diferenciación Celular/genética , Mutación/genética , Niacinamida/metabolismo
7.
Int. j. clin. health psychol. (Internet) ; 23(4)oct.-dic. 2023. tab, graf
Artículo en Inglés | IBECS | ID: ibc-226379

RESUMEN

The individual differences among children with autism spectrum disorder (ASD) may make it challenging to achieve comparable benefits from a specific exercise intervention program. A new method for predicting the possible outcomes and maximizing the benefits of exercise intervention for children with ASD needs further exploration. Using the mini-basketball training program (MBTP) studies to improve the symptom performance of children with ASD as an example, we used the supervised machine learning method to predict the possible intervention outcomes based on the individual differences of children with ASD, investigated and validated the efficacy of this method. In a long-term study, we included 41 ASD children who received the MBTP. Before the intervention, we collected their clinical information, behavioral factors, and brain structural indicators as candidate factors. To perform the regression and classification tasks, the random forest algorithm from the supervised machine learning method was selected, and the cross validation method was used to determine the reliability of the prediction results. The regression task was used to predict the social communication impairment outcome following the MBTP in children with ASD, and explainable variance was used to evaluate the predictive performance. The classification task was used to distinguish the core symptom outcome groups of ASD children, and predictive performance was assessed based on accuracy. We discovered that random forest models could predict the outcome of social communication impairment (average explained variance was 30.58%) and core symptom (average accuracy was 66.12%) following the MBTP, confirming that the supervised machine learning method can predict exercise intervention outcomes for children with ASD. (AU)


Asunto(s)
Humanos , Masculino , Femenino , Preescolar , Niño , Trastorno del Espectro Autista , Ejercicio Físico/psicología , Aprendizaje Automático Supervisado , Baloncesto , Individualidad
8.
J Autism Dev Disord ; 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37882897

RESUMEN

Exercise intervention has been proven helpful to ameliorate core symptoms of Autism Spectrum Disorder (ASD). However, the underlying mechanisms are not fully understood. In this study, we carried out a 12-week mini-basketball training program (MBTP) on ASD children and examined the changes of brain functional and structural networks before and after exercise intervention. We applied individual-based method to construct functional network and structural morphological network, and investigated their alterations following MBTP as well as their associations with the change in core symptom. Structural MRI and resting-state functional MRI data were obtained from 58 ASD children aged 3-12 years (experiment group: n = 32, control group: n = 26). ASD children who received MBTP intervention showed several distinguishable alternations compared to the control without special intervention. These included decreased functional connectivity within the sensorimotor network (SM) and between SM and the salience network, decreased morphological connectivity strength in a cortical-cortical network centered on the left inferior temporal gyrus, and a subcortical-cortical network centered on the left caudate. Particularly, the aforementioned functional and structural changes induced by MBTP were associated with core symptoms of ASD. Our findings suggested that MBTP intervention could be an effective approach to improve core symptoms in ASD children, decrease connectivity in both structure and function networks, and may drive the brain change towards normal-like neuroanatomy.

9.
Int J Clin Health Psychol ; 23(4): 100409, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37711468

RESUMEN

The individual differences among children with autism spectrum disorder (ASD) may make it challenging to achieve comparable benefits from a specific exercise intervention program. A new method for predicting the possible outcomes and maximizing the benefits of exercise intervention for children with ASD needs further exploration. Using the mini-basketball training program (MBTP) studies to improve the symptom performance of children with ASD as an example, we used the supervised machine learning method to predict the possible intervention outcomes based on the individual differences of children with ASD, investigated and validated the efficacy of this method. In a long-term study, we included 41 ASD children who received the MBTP. Before the intervention, we collected their clinical information, behavioral factors, and brain structural indicators as candidate factors. To perform the regression and classification tasks, the random forest algorithm from the supervised machine learning method was selected, and the cross validation method was used to determine the reliability of the prediction results. The regression task was used to predict the social communication impairment outcome following the MBTP in children with ASD, and explainable variance was used to evaluate the predictive performance. The classification task was used to distinguish the core symptom outcome groups of ASD children, and predictive performance was assessed based on accuracy. We discovered that random forest models could predict the outcome of social communication impairment (average explained variance was 30.58%) and core symptom (average accuracy was 66.12%) following the MBTP, confirming that the supervised machine learning method can predict exercise intervention outcomes for children with ASD. Our findings provide a novel and reliable method for identifying ASD children most likely to benefit from a specific exercise intervention program in advance and a solid foundation for establishing a personalized exercise intervention program recommendation system for ASD children.

10.
Front Pediatr ; 11: 1173787, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37622082

RESUMEN

Thiamine pyrophosphokinase (TPK) deficiency, is a rare autosomal recessive disorder of congenital metabolic dysfunction caused by variants in the TPK1 gene. TPK1 variants can lead to thiamine metabolic pathway obstacles, and its clinical manifestations are highly variable. We describe two cases of TPK deficiency with completely different phenotypes and different therapeutic effects, and 26 cases of previously reported were retrospectively reviewed to improve our understanding of the clinical and genetic features of the disease. Patients with TPK deficiency present with ataxia, dysarthria, dystonia, disturbance of consciousness, seizures, and other nervous system dysfunction. Different gene variant sites may lead to different clinical features and therapeutic effects. Gene analysis is important for the diagnosis of TPK deficiency caused by TPK1 variants, and thiamine supplementation has been the mainstay of treatment for TPK deficiency to date.

11.
Cells ; 12(14)2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37508483

RESUMEN

The CRISPR/Cas9 system is widely used for genome editing in livestock production, although off-target effects can occur. It is the main method to produce genome-edited goats by somatic cell nuclear transfer (SCNT) of CRISPR/Cas9-mediated genome-edited primary goat fetal fibroblast cells (GFFs). Improving the double-strand break (DSB) efficiency of Cas9 in primary cells would improve the homologous repair (HR) efficiency. The low efficiency of HR remains a major hurdle in CRISPR/Cas9-mediated precise genome editing, increasing the work required to screen the genome-edited primary cell clones. In this study, we modified several essential parameters that affect the efficiency of the CRISPR/Cas9-mediated knock-in GFF cloning system, including establishing a high-efficiency transfection system for primary cells via nucleofection and optimizing homology arm (HA) length during HR. Here, we specifically inserted a recombinant human butyrylcholinesterase gene (rhBChE) into the goat fibroblast growth factor (FGF)-5 locus through the CRISPR/Cas9 system, thereby achieving simultaneous rhBChE insertion and FGF5 knock-out. First, this study introduced the Cas9, FGF5 knock-out small guide RNA, and rhBChE knock-in donors into GFFs by electroporation and obtained positive cell clones without off-target effects. Then, we demonstrated the expression of rhBChE in GFF clones and verified its function. Finally, we obtained a CRISPR/Cas9-mediated rhBChE-overexpression goat.


Asunto(s)
Butirilcolinesterasa , Sistemas CRISPR-Cas , Edición Génica , Animales , Humanos , Butirilcolinesterasa/genética , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Cabras/genética , Transfección
12.
RSC Adv ; 13(28): 19235-19242, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37377866

RESUMEN

In this study, four metal ions Mg2+, Al3+, Fe3+, and Zn2+ were loaded on the surface of activated carbon by an impregnation method coupled with high-temperature calcination to prepare modified activated carbon. Scanning electron microscopy, specific surface area and pore size analysis, X-ray diffraction, and Fourier infrared spectroscopy were used to evaluate the structure and morphology of the modified activated carbon. The findings show that the modified activated carbon had a large microporous structure and high specific surface area, both of which significantly improved absorbability. This study also investigated the adsorption and desorption kinetics of the prepared activated carbon for three flavonoids with representative structures. The adsorption amounts of quercetin, luteolin, and naringenin in the blank activated carbon reached 920.24 mg g-1, 837.07 mg g-1, and 677.37 mg g-1, while for activated carbon impregnated with Mg, the adsorption amounts reached 976.34 mg g-1, 963.39 mg g-1, and 817.98 mg g-1, respectively; however, the desorption efficiencies of the three flavonoids varied a lot. The differences in desorption rates of naringenin as compared with quercetin and luteolin in the blank activated carbon were 40.13% and 46.22%, respectively, and the difference in desorption rates increased to 78.46% and 86.93% in the activated carbon impregnated with Al. The differences provide a basis for the application of this type of activated carbon in the selective enrichment and separation of flavonoids.

13.
Front Vet Sci ; 10: 1119312, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37065235

RESUMEN

Introduction: Myostatin (MSTN) negatively regulates skeletal muscle development. However, its function in reproductive performance and visceral organs has not been thoroughly investigated. Previously, we prepared a MSTN and fibroblast growth factor 5 (FGF5) double-knockout sheep, which was a MSTN and FGF5 dual-gene biallelic homozygous (MF-/-) mutant. Methods: To understand the role of MSTN and FGF5 in reproductive performance and visceral organs, this study evaluated the ejaculation amount, semen pH, sperm motility, sperm density, acrosome integrity, rate of teratosperm, and seminal plasma biochemical indicators in adult MF-/- rams. We also compared the overall morphology, head, head-neck junction, middle segment and the transection of middle segment of spermatozoa between wildtype (WT) and MF-/- rams. Results: Our results showed that the seminal plasma biochemical indicators, sperm structure and all sperm indicators were normal, and the fertilization rate also has no significant difference between WT and MF-/- rams, indicating that the MF-/- mutation did not affect the reproductive performance of sheep. Additional analysis evaluated the histomorphology of the visceral organs, digestive system and reproductive system of MF+/- sheep, the F1 generation of MF-/-, at the age of 12 months. There was an increased spleen index, but no significant differences in the organ indexes of heart, liver, lung, kidney and stomach, and no obvious differences in the histomorphology of visceral organs, digestive system and reproductive system in MF+/- compared with WT sheep. No MF+/- sheep were observed to have any pathological features. Discussion: In summary, the MSTN and FGF5 double-knockout did not affect reproductive performance, visceral organs and digestive system in sheep except for differences previously observed in muscle and fat. The current data provide a reference for further elucidating the application of MSTN and FGF5 double-knockout sheep.

14.
DNA Cell Biol ; 42(3): 163-175, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36917699

RESUMEN

Improving livestock and poultry growth rates and increasing meat production are urgently needed worldwide. Previously, we produced a myostatin (MSTN) and fibroblast growth factor 5 (FGF5) double-knockout (MF-/-) sheep by CRISPR Cas9 system to improve meat production, and also wool production. Both MF-/- sheep and the F1 generation (MF+/-) sheep showed an obvious "double-muscle" phenotype. In this study, we identified the expression profiles of long noncoding RNAs (lncRNAs) in wild-type and MF+/- sheep, then screened out the key candidate lncRNAs that can regulate myogenic differentiation and skeletal muscle development. These key candidate lncRNAs can serve as critical gatekeepers for muscle contraction, calcium ion transport and skeletal muscle cell differentiation, apoptosis, autophagy, and skeletal muscle inflammation, further revealing that lncRNAs play crucial roles in regulating muscle phenotype in MF+/- sheep. In conclusion, our newly identified lncRNAs may emerge as novel molecules for muscle development or muscle disease and provide a new reference for MSTN-mediated regulation of skeletal muscle development.


Asunto(s)
ARN Largo no Codificante , Animales , Ovinos/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Miostatina/genética , Miostatina/metabolismo , Factor 5 de Crecimiento de Fibroblastos/genética , Factor 5 de Crecimiento de Fibroblastos/metabolismo , Fenotipo , Músculo Esquelético/metabolismo , Desarrollo de Músculos/genética
15.
Quant Imaging Med Surg ; 13(2): 1138-1163, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36819279

RESUMEN

Background and Objective: With the development of endoscopic techniques, narrow-band imaging (NBI) has been widely used in the diagnosis of various types of diseases. NBI can detect mucosal lesions at an early stage and different classification strategies have been established to help clinicians in disease diagnosis. However, there is currently no consensus for the classification criteria. This report summarizes the current classifications of diseases using NBI, so as to provide a comprehensive understanding of the various manifestations of mucosal lesions under NBI, and to promote the development of more practical NBI classifications. Methods: The PubMed database was searched for English language articles published between January 1994 and November 2021 using the keywords 'narrow band imaging', 'NBI', and 'classification'. Key Content and Findings: We systematically summarized the NBI classifications and manifestations of different diseases. The morphology of the mucosa and vessels was used as the basis of most classifications. These classifications are mainly helpful to distinguish benign and malignant tumors and to detect early neoplastic lesions. Conclusions: This review summarized existing NBI classifications for different systems. These classifications will be updated as the understanding of diseases increases and new optical techniques become available to better assist doctors in making clinical decisions.

16.
Brain Sci ; 13(2)2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36831723

RESUMEN

With advances in medical diagnostic technology, the healthy development of children with autism spectrum disorder (ASD) is receiving more and more attention. In this article, the mediating effect of brain gray matter volume (GMV) between overweight/obesity and social communication (SC) was investigated through the analysis of the relationship between overweight/obesity and SC in autism spectrum disorder children. In total, 101 children with ASD aged 3-12 years were recruited from three special educational centers (Yangzhou, China). Overweight/obesity in children with ASD was indicated by their body mass index (BMI); the Social Responsiveness Scale, Second Edition (SRS-2) was used to assess their social interaction ability, and structural Magnetic Resonance Imaging (sMRI) was used to measure GMV. A mediation model was constructed using the Process plug-in to analyze the mediating effect of GMV between overweight/obesity and SC in children with ASD. The results revealed that: overweight/obesity positively correlated with SRS-2 total points (p = 0.01); gray matter volume in the left dorsolateral superior frontal gyrus (Frontal_Sup_L GMV) negatively correlated with SRS-2 total points (p = 0.001); and overweight/obesity negatively correlated with Frontal_Sup_L GMV (p = 0.001). The Frontal_Sup_L GMV played a partial mediating role in the relationship between overweight/obesity and SC, accounting for 36.6% of total effect values. These findings indicate the significant positive correlation between overweight/obesity and SC; GMV in the left dorsolateral superior frontal gyrus plays a mediating role in the relationship between overweight/obesity and SC. The study may provide new evidence toward comprehensively revealing the overweight/obesity and SC relationship.

17.
Gene ; 860: 147229, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36717040

RESUMEN

BACKGROUND: The variant m.3571_3572insC/MT-ND1 thus far only reported in oncocytic tumors of different tissues. However, the role of m.3571_3572insC in inherited mitochondrial diseases has yet to be elucidated. METHODS: A patient diagnosed with MELAS syndrome was recruited, and detailed medical records were collected and reviewed. The muscle was biopsied for mitochondrial respiratory chain enzyme activity. Series of fibroblast clones bearing different m.3571_3572insC variant loads were generated from patient-derived fibroblasts and subjected to functional assays. RESULTS: Complex I deficiency was confirmed in the patient's muscle via mitochondrial respiratory chain enzyme activity assay. The m.3571_3572insC was filtered for the candidate variant of the patient according to the guidelines for mitochondrial mRNA variants interpretation. Three cell clones with different m.3571_3572insC variant loads were generated to evaluate mitochondrial function. Blue native PAGE analysis revealed that m.3571_3572insC caused a deficiency in the mitochondrial complex I. Oxygen consumption rate, ATP production, and lactate assays found an impairment of cellular bioenergetic capacity due to m.3571_3572insC. Mitochondrial membrane potential was decreased, and mitochondrial reactive oxygen species production was increased with the variant of m.3571_3572insC. According to the competitive cell growth assay, the mutant cells had impaired cell growth capacity compared to wild type. CONCLUSIONS: A novel variant m.3571_3572insC was identified in a patient diagnosed with MELAS syndrome, and the variant impaired mitochondrial respiration by decreasing the activity of complex I. In conclusion, the genetic spectrum of mitochondrial diseases was expanded by including m.3571_3572insC/MT-ND1.


Asunto(s)
Síndrome MELAS , Enfermedades Mitocondriales , Humanos , ADN Mitocondrial/genética , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Síndrome MELAS/genética , Síndrome MELAS/metabolismo , Síndrome MELAS/patología , Enfermedades Mitocondriales/genética , Mutación , NADH Deshidrogenasa/genética , Mutación del Sistema de Lectura
19.
Brain Sci ; 12(11)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36358366

RESUMEN

We evaluated the association between cardiorespiratory fitness (CRF) and executive function (EF) in young adults and the mediating effects of GMV on this relationship. This study involved 217 college students. An incremental load exercise program was used to evaluate VO2max. EF was estimated by the Flanker task, the 2-back task, and the more-odd shifting task, while structural magnetic resonance and region-based morphometry (RBM) were used to analyze GMV. The high CRF group had a shorter updating reaction time (RT) (p ≤ 0.05). CRF was positively correlated with the right orbital part of the middle frontal gyrus (ORBmid.R) GMV (p ≤ 0.05). ORBmid.R GMV was negatively correlated with updating RT (p ≤ 0.05). Model 4 in SPSS was used to assess the mediating effects of ORBmid.R GMV between CRF and updating RT. ORBmid.R GMV was established to have a partially mediating role between CRF and updating RT, which accounted for 19.6% of the total effect value. These findings indicate that the negative correlation between CRF and EF was significant, and ORBmid.R GMV played a mediating role in the relationship between CRF and EF, providing new evidence toward comprehensively revealing that CRF promotes EF performance.

20.
Front Pharmacol ; 13: 989664, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36188605

RESUMEN

Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) rapidly infects humans and animals which make coronavirus disease 2019 (COVID-19) a grievous epidemic worldwide which broke out in 2020. According to data analysis of the other coronavirus family, for instance severe acute respiratory syndrome SARS coronavirus (SARS-CoV), can provide experience for the mutation of SARS-CoV-2 and the prevention and treatment of COVID-19. Toll-like receptors (TLRs) as a pattern recognition receptor (PRRs), have an indispensable function in identifying the invader even activate the innate immune system. It is possible for organism to activate different TLR pathways which leads to secretion of proinflammatory cytokines such as Interleukin 1 (IL-1), Interleukin 6 (IL-6), Tumor necrosis factor α (TNFα) and type Ⅰ interferon. As a component of non-specific immunity, TLRs pathway may participate in the SARS-CoV-2 pathogenic processes, due to previous works have proved that TLRs are involved in the invasion and infection of SARS-CoV and MERS to varying degrees. Different TLR, such as TLR2, TLR4, TLR7, TLR8 and TLR9 probably have a double-sided in COVID-19 infection. Therefore, it is of great significance for a correctly acknowledging how TLR take part in the SARS-CoV-2 pathogenic processes, which will be the development of treatment and prevention strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...