Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.291
Filtrar
1.
Adv Sci (Weinh) ; : e2406633, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39116343

RESUMEN

Gallbladder cancer (GBC) is the most common malignant tumor of the biliary system, with poor response to current treatments. Abnormal alternative splicing has been associated with the development of a variety of tumors. Combining the GEO database and GBC mRNA-seq analysis, it is found high expression of the splicing factor polypyrimidine region- binding protein 3 (PTBP3) in GBC. Multi-omics analysis revealed that PTBP3 promoted exon skipping of interleukin-18 (IL-18), resulting in the expression of ΔIL-18, an isoform specifically expressed in tumors. That ΔIL-18 promotes GBC immune escape by down-regulating FBXO38 transcription levels in CD8+T cells to reduce PD-1 ubiquitin-mediated degradation is revealed. Using a HuPBMC mouse model, the role of PTBP3 and ΔIL-18 in promoting GBC growth is confirmed, and showed that an antisense oligonucleotide that blocked ΔIL-18 production displayed anti-tumor activity. Furthermore, that the H3K36me3 promotes exon skipping of IL-18 by recruiting PTBP3 via MRG15 is demonstrated, thereby coupling the processes of IL-18 transcription and alternative splicing. Interestingly, it is also found that the H3K36 methyltransferase SETD2 binds to hnRNPL, thereby interfering with PTBP3 binding to IL-18 pre-mRNA. Overall, this study provides new insights into how aberrant alternative splicing mechanisms affect immune escape, and provides potential new perspectives for improving GBC immunotherapy.

2.
Phys Rev Lett ; 133(4): 046802, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39121403

RESUMEN

Freestanding ferroelectric oxide membranes emerge as a promising platform for exploring the interplay between topological polar ordering and dipolar interactions that are continuously tunable by strain. Our investigations combining density functional theory (DFT) and deep-learning-assisted molecular dynamics simulations demonstrate that DFT-predicted strain-driven morphotropic phase boundary involving monoclinic phases manifest as diverse domain structures at room temperatures, featuring continuous distributions of dipole orientations and mobile domain walls. Detailed analysis of dynamic structures reveals that the enhanced piezoelectric response observed in stretched PbTiO_{3} membranes results from small-angle rotations of dipoles at domain walls, distinct from conventional polarization rotation mechanism and adaptive phase theory inferred from static structures. We identify a ferroelectric topological structure, termed "dipole spiral," which exhibits a giant intrinsic piezoelectric response (>320 pC/N). This helical structure, possessing a rotational zero-energy mode, unlocks new possibilities for exploring chiral phonon dynamics and dipolar Dzyaloshinskii-Moriya-like interactions.

3.
Sci Rep ; 14(1): 18259, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107507

RESUMEN

In order to improve the service life of extrusion taps and reduce their wear, this paper adopted the coating-simulation technology to investigate the influence laws of tool coating type and coating thickness on extrusion torque, extrusion temperature and wear amount. The validity of the numerical simulation results is confirmed through internal thread extrusion experiments. The results showed that the extrusion torque and extrusion temperature of single-layer coating and composite coating showed a tendency of decreasing and then increasing with the increase of the coating thickness; the extrusion torque and extrusion temperature of the double-layer coating increased with the increase of the coating thickness; the wear amount of the three types of coatings increased with the increase of the coating thickness. The TiAlN single coating demonstrates the most pronounced impact on decreasing extrusion torque and temperature (3.82 N·m and 88.4 °C), resulting in a smooth extrusion process. The TiAlN-TiAlN double coating exhibits the lowest wear amount of 0.076 mm. The utilization of numerical simulation proves to be a dependable approach for evaluating the efficacy of tool coatings, and reasonable selection of coating type and thickness can effectively reduce the extrusion torque, extrusion temperature and wear amount.

4.
Cancer Control ; 31: 10732748241271682, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39105433

RESUMEN

BACKGROUND: The effect of neoadjuvant chemotherapy (NACT) in gallbladder cancer (GBC) patients remains controversial. The aim of this study was to assess the impact of NACT on overall survival (OS) and cancer specific survival (CSS) in patients with localized or locoregionally advanced GBC, and to explore possible protective predictors for prognosis. METHODS: Data for patients with localized or locoregionally advanced GBC (i.e., categories cTx-cT4, cN0-2, and cM0) from 2004 to 2020 were collected from the Surveillance, Epidemiology, and End Results (SEER) database. Patients in the NACT and non-NACT groups were propensity score matched (PSM) 1:3, and the Kaplan-Meier method and log-rank test were performed to analyze the impact of NACT on OS and CSS. Univariable and multivariable Cox regression models were applied to identify the possible prognostic factors. Subgroup analysis was conducted to identify patients who would benefit from NACT. RESULTS: Of the 2676 cases included, 78 NACT and 234 non-NACT patients remained after PSM. In localized or locoregionally advanced GBC patients, the median OS of the NACT and non-NACT was 31 and 16 months (log-rank P < 0.01), and the median CSS of NACT and non-NACT was 32 and 17 months (log-rank P < 0.01), respectively. Longer median OS (31 vs 17 months, log-rank P < 0.01) and CSS (32 vs 20 months, log-rank P < 0.01) was associated with NACT compared with surgery alone. Multivariable Cox regression analysis showed that NACT, stage, and surgery type were prognostic factors for OS and CSS in GBC patients. Subgroup analysis revealed that the survival hazard ratios (HRs) of NACT vs non-NACT for localized or locoregionally advanced GBC patients were significant in most subgroups. CONCLUSIONS: NACT may provide therapeutic benefits for localized or locoregionally advanced GBC patients, especially for those with advanced stage, node-positive, poorly differentiated or undifferentiated disease. NACT combined with radical surgery was associated with a survival advantage. Therefore, NACT combined with surgery may provide a better treatment option for resectable GBC patients.


Asunto(s)
Neoplasias de la Vesícula Biliar , Terapia Neoadyuvante , Puntaje de Propensión , Programa de VERF , Humanos , Neoplasias de la Vesícula Biliar/patología , Neoplasias de la Vesícula Biliar/mortalidad , Neoplasias de la Vesícula Biliar/tratamiento farmacológico , Neoplasias de la Vesícula Biliar/terapia , Femenino , Masculino , Terapia Neoadyuvante/métodos , Terapia Neoadyuvante/estadística & datos numéricos , Persona de Mediana Edad , Pronóstico , Anciano , Quimioterapia Adyuvante/estadística & datos numéricos , Quimioterapia Adyuvante/métodos , Estadificación de Neoplasias , Estimación de Kaplan-Meier
5.
World J Gastroenterol ; 30(26): 3229-3246, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39086630

RESUMEN

BACKGROUND: Monopolar spindle-binding protein 3B (MOB3B) functions as a signal transducer and altered MOB3B expression is associated with the development of human cancers. AIM: To investigate the role of MOB3B in colorectal cancer (CRC). METHODS: This study collected 102 CRC tissue samples for immunohistochemical detection of MOB3B expression for association with CRC prognosis. After overexpression and knockdown of MOB3B expression were induced in CRC cell lines, changes in cell viability, migration, invasion, and gene expression were assayed. Tumor cell autophagy was detected using transmission electron microscopy, while nude mouse xenograft experiments were performed to confirm the in-vitro results. RESULTS: MOB3B expression was reduced in CRC vs normal tissues and loss of MOB3B expression was associated with poor CRC prognosis. Overexpression of MOB3B protein in vitro attenuated the cell viability as well as the migration and invasion capacities of CRC cells, whereas knockdown of MOB3B expression had the opposite effects in CRC cells. At the molecular level, microtubule-associated protein light chain 3 II/I expression was elevated, whereas the expression of matrix metalloproteinase (MMP)2, MMP9, sequestosome 1, and phosphorylated mechanistic target of rapamycin kinase (mTOR) was downregulated in MOB3B-overexpressing RKO cells. In contrast, the opposite results were observed in tumor cells with MOB3B knockdown. The nude mouse data confirmed these in-vitro findings, i.e., MOB3B expression suppressed CRC cell xenograft growth, whereas knockdown of MOB3B expression promoted the growth of CRC cell xenografts. CONCLUSION: Loss of MOB3B expression promotes CRC development and malignant behaviors, suggesting a potential tumor suppressive role of MOB3B in CRC by inhibition of mTOR/autophagy signaling.


Asunto(s)
Autofagia , Movimiento Celular , Neoplasias Colorrectales , Invasividad Neoplásica , Transducción de Señal , Serina-Treonina Quinasas TOR , Anciano , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Línea Celular Tumoral , Supervivencia Celular , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/genética , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Ratones Endogámicos BALB C , Ratones Desnudos , Pronóstico , Serina-Treonina Quinasas TOR/metabolismo
6.
Adv Healthc Mater ; : e2401430, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177124

RESUMEN

Regenerating bone defects in diabetic rats presents a significant challenge due to the detrimental effects of reactive oxygen species and impaired autophagy on bone healing. To address these issues, a metformin-modified biomimetic silicified collagen scaffold is developed utilizing the principles of biomimetic silicification. In vitro and in vivo experiments demonstrated that the scaffold enhanced bone tissue regeneration within the diabetic microenvironment through the release of dual bio-factors. Further analysis reveals a potential therapeutic mechanism whereby these dual bio-factors synergistically promoted osteogenesis in areas of diabetic bone defects by improving mitochondrial autophagy and maintaining redox balance. The present study provides critical insights into the advancement of tissue engineering strategies aimed at bone regeneration in diabetic patients. The study also sheds light on the underlying biological mechanisms.

7.
Artículo en Inglés | MEDLINE | ID: mdl-39181427

RESUMEN

BACKGROUND AND AIMS: Hepatocellular carcinoma (HCC) risk prediction models established in patients with chronic hepatitis B (CHB) receiving nucleoside analogue (NA) rarely included viral factors because of mediocre predictability of traditional viral markers. Here, we investigate the role of serum hepatitis B virus (HBV) RNA, a novel biomarker, in predicting HCC risk in NA-treated patients. METHODS: A total of 1374 NA-treated patients were enrolled from two prospective CHB cohorts. Serum HBV RNA was detected at baseline, year 1, 2 and 3 of treatment. Cox proportional-hazard model was used to investigate the association of HBV RNA kinetics with HCC risk. RESULTS: After a median follow-up of 5.4 years, 76 patients developed HCC. HBV RNA declines at year 1 (adjusted hazard ratio (aHR) = 0.70, P = .009) and 2 (aHR = 0.71, P = .016) were independently associated with HCC risk. Patients with less HBV RNA decline at year 1 (=< 0.4 log10 copies/mL) or 2 (=<0.6 log10 copies/mL) had 2.22- and 2.09-folds higher HCC risk, respectively, than those with more declines. When incorporating these early on-treatment HBV RNA declines into existing HCC risk scores, including PAGE B, mPAGE B and aMAP score, they could enhance their predictive performance [i.e. C-index, 0.814 vs. 0.788 (Model (PAGE B + year-1 HBV RNA decline)vs. PAGE B score based on baseline parameters)]. CONCLUSIONS: Serum HBV RNA declines at year 1 and 2 were significantly associated with on-treatment HCC risk. Incorporating early on-treatment HBV RNA declines into HCC risk prediction models can be useful tools to guide appropriate surveillance strategies in NA-treated patients.

8.
Artículo en Inglés | MEDLINE | ID: mdl-39188091

RESUMEN

Since the advent of formamidinium (FA)-based perovskite photovoltaics (PVs), significant performance enhancements have been achieved. However, a critical challenge persists: the propensity for void formation in the perovskite film at the buried perovskite-interlayer interface has a deleterious effect on device performance. With most emerging perovskite PVs adopting the p-i-n architecture, the specific challenge lies at the perovskite-hole transport layer (HTL) interface, with previous strategies to overcome this limitation being limited to specific perovskite-HTL combinations; thus, the lack of universal approaches represents a bottleneck. Here, we present a novel strategy that overcomes the formation of such voids (microstructural defects) through a film treatment with methylammonium chloride (MACl). Specifically, our work introduces MACl via a sequential deposition method, having a profound impact on the microstructural defect density at the critical buried interface. Our technique is independent of both the HTL and the perovskite film thickness, highlighting the universal nature of this approach. By employing device photoluminescence measurements and conductive atomic force microscopy, we reveal that when present, such voids impede charge extraction, thereby diminishing device short-circuit current. Through comprehensive steady-state and transient photoluminescence spectroscopy analysis, we demonstrate that by implementing our MACl treatment to remedy these voids, devices with reduced defect states, suppressed nonradiative recombination, and extended carrier lifetimes of up to 2.3 µs can be prepared. Furthermore, our novel treatment reduces the stringent constraints around antisolvent choice and dripping time, significantly extending the processing window for the perovskite absorber layer and offering significantly greater flexibility for device fabrication.

9.
J Phys Condens Matter ; 36(44)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39074511

RESUMEN

Superconducting materials have garnered widespread attention due to their zero-resistance characteristic and complete diamagnetism. After more than 100 years of exploration, various high-temperature superconducting materials including cuprates, nickelates, iron-based compounds, and ultra-high pressure multi-hydrides have been discovered. However, the practical application of these materials is severely hindered by their poor ductility and/or the need for high-pressure conditions to maintain structural stability. To address these challenges, we first provide a new thought to build high-temperature superconducting materials based on few-hydrogen metal-bonded hydrides under ambient pressure. We then review the related research efforts in this article. Moreover, based on the bonding type of atoms, we classify the existing important superconducting materials and propose the new concepts of pseudo-metal and quasi-metal superconductivity, which are expected to be helpful for the design of new high-temperature superconducting materials in the future.

10.
J Phys Condens Matter ; 36(44)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39074501

RESUMEN

High ionic conductivity solid-state electrolytes are essential for powerful solid-state lithium-ion batteries. With density functional theory andab initiomolecular dynamics simulations, we investigated the crystal structures of Li3YBr6and Li3LaBr6. The lowest energy configurations with uniform distribution of lithium ions were identified. Both materials have wide electrochemical stability windows (ESW): 2.64 V and 2.57 V, respectively. The experimental ESW for Li3YBr6is 2.50 V. Through extrapolating various temperature diffusion results, the conductivity of Li3YBr6was obtained at room temperature, approximately 3.9 mS cm-1, which is comparable to the experimental value 3.3 mS cm-1. Li3LaBr6has a higher conductivity, a 100% increase compared with Li3YBr6. The activation energies of Li3YBr6and Li3LaBr6through the Arrhenius plot are 0.26 eV and 0.24 eV, respectively, which is also close to the experimental value of 0.30 eV for Li3YBr6. This research explored high ionic conductivity halide materials and will contribute to developing solid-state lithium-ion batteries.

11.
Support Care Cancer ; 32(8): 561, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085696

RESUMEN

Prostate cancer is one of the most common malignancies and a leading cause of death in men. Owing to its excellent anti-tumor effects, androgen deprivation therapy (ADT) is widely used in the treatment of prostate cancer. However, its use is controversial because of its potential for inducing cognitive decline. In this review, we summarized the findings of preclinical and clinical studies investigating the effects of ADT on cognitive function in prostate cancer. We discussed the methods used to assess cognitive function in these studies, elucidated the mechanisms through which ADT affects cognitive function, and highlighted recent advancements in cognitive assessment methods. The findings of this review serve as a valuable reference for examining the relationship between ADT and cognitive function in future studies. Besides, the findings may help clinicians understand the advantages and disadvantages of ADT and optimize the treatment plan so as to minimize the adverse effects of ADT.


Asunto(s)
Antagonistas de Andrógenos , Cognición , Neoplasias de la Próstata , Humanos , Antagonistas de Andrógenos/efectos adversos , Neoplasias de la Próstata/tratamiento farmacológico , Masculino , Cognición/efectos de los fármacos , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/etiología , Factores de Riesgo
12.
Nat Commun ; 15(1): 5879, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-38997253

RESUMEN

The development of new antibiotics continues to pose challenges, particularly considering the growing threat of multidrug-resistant Staphylococcus aureus. Structurally diverse natural products provide a promising source of antibiotics. Herein, we outline a concise approach for the collective asymmetric total synthesis of polycyclic xanthene myrtucommulone D and five related congeners. The strategy involves rapid assembly of the challenging benzopyrano[2,3-a]xanthene core, highly diastereoselective establishment of three contiguous stereocenters through a retro-hemiketalization/double Michael cascade reaction, and a Mitsunobu-mediated chiral resolution approach with high optical purity and broad substrate scope. Quantum mechanical calculations provide insight into stereoselective construction mechanism of the three contiguous stereocenters. Additionally, this work leads to the discovery of an antibacterial agent against both drug-sensitive and drug-resistant S. aureus. This compound operates through a unique mechanism that promotes bacterial autolysis by activating the two-component sensory histidine kinase WalK. Our research holds potential for future antibacterial drug development.


Asunto(s)
Antibacterianos , Staphylococcus aureus Resistente a Meticilina , Xantenos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Xantenos/síntesis química , Xantenos/farmacología , Xantenos/química , Pruebas de Sensibilidad Microbiana , Estereoisomerismo , Compuestos Policíclicos/síntesis química , Compuestos Policíclicos/farmacología , Compuestos Policíclicos/química , Descubrimiento de Drogas , Estructura Molecular
13.
Heliyon ; 10(13): e33414, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39035483

RESUMEN

Female Culter alburnus was faster in growth rate than males. In this study, the gynogenetic G2 and the pseudo-male G2' were used as the female and male parents, respectively, to breed a new national variety "All-female No.1" C. alburnus (AFC). Hormone induction, embryonic development, gonadal differentiation, and growth of AFC were studied. The results showed induction with low concentrations of 17α-methyltestosterone in a indoor-net cage culture was not effective. Under the stimulation of 17α-methyltestosterone, some gonads had a tendency to transform into testis, but not completely. There were three types of gonads in 5-month-old and four types of gonads in 12-month-old fishes, however, they all differentiated into ovaries in 15-month-old fishes. Testosterone propionate and high concentrations of 17α-methyltestosterone in pond culture induction had a good effect resulting in ①a functional pseudo-male with normal testis development that could successfully extrude semen during the breeding period, ②a pseudo-male with normal testis development, but could not extrude semen, and ③the appearance of intersexual glands. The second experiment revealed that with common fish, all-female fish embryo had normal embryonic development. The development time and morphological characteristics of each stage were similar, but the development of the all-female embryo was slightly slower than the common embryos. The gonad differentiation of the all-female embryo were normal and none differentiated into testis, which indicated that all-female could ensure the female sex without affecting the normal gonad differentiation. The correlation between body weight, length, and month-age of all-female and common fish was strong. The all-female had faster growth rate and more uniform growth specification than the common fish. Therefore, the use of testosterone propionate and high concentrations of 17α-methyltestosterone in pond culture induction could avoid complete degeneration of gonads into ovaries. The all-female embryo had the advantages of normal embryonic development and gonadal differentiation, faster growth, and uniform growth specification.

14.
J Colloid Interface Sci ; 675: 1052-1058, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39013301

RESUMEN

By incorporating polar fibers into the design of electrorheological (ER) fluids, a 130% performance improvement can be achieved with the addition of only 0.8 vol% of polar long fibers. We quantitatively analyzed the impact of relatively long fibers on improving ER performance by measuring the yield stress, shear stress, and current density after adding fibers. Both optical microscopy and transmission electron microscopy were used to observe and analyze the interaction between ER particles and polar fibers. The results indicate that, under the influence of an electric field, the fibers transform the one-dimensional chain-like structure into a two-dimensional mesh structure, greatly improving the ER performance. The transformation of structure induced by the polar fibers in the ER fluids amplifies the ER effect. However, the inclusion of non-polar fibers does not contribute to this enhancement, as a point of comparison. Moreover, to ensure the universality of this method, we used two different types of ER fluids in experiments. The utilization of this method offers a straightforward, environmentally friendly, and highly effective approach. Furthermore, this study provides a novel technical solution aimed at enhancing the performance of ER fluids.

15.
Anal Sci ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014280

RESUMEN

Ratiometric fluorescence detection is endowed with higher accuracy than single fluorescence signal assay. In this work, we construct a ratiometric fluorescence probe for the facile quantification of sulfadimethoxine (SDM) in foods. By wrapping N-doped carbon dots (N-CDs) and gold nanoclusters (AuNCs) into zeolitic imidazolate framework-8 (ZIF-8), the nanocomposite of N-CDs/AuNCs@ZIF-8 is facilely prepared and emits two fluorescence including 475 nm from N-CDs and 650 nm from AuNCs. Since bovine serum albumin (BSA) is the stabilizer of AuNCs, SDM can form a complex with BSA, resulting in the fluorescence quenching of AuNCs at 650 nm by a static quenching mechanism. In contrast, SDM has a rare influence on the fluorescence of N-CDs (475 nm). As a result, the use of the probe of N-CDs/AuNCs@ZIF-8 for SDM detection enables simultaneous measurement of response signal and reference signal. Under the optimal condition, the SDM assay based on the probe has a good linear relationship within 10 to 2 × 106 ng/mL and the limit of detection (LOD) is low to 1.064 ng/mL. In addition, the fluorescent probe shows good reliability for the detection of SDM in practical food samples.

16.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3263-3269, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-39041088

RESUMEN

Numerous studies show that Lonicera macranthoides and L. japonica have significant differences in organic matter. However, there is still a lack of research on inorganic elements between them. In this study, a non-targeted elemental metabolomics method was established by inductively coupled plasma mass spectrometry(ICP-MS), so as to compare the overall differences of inorganic elements between L. macranthoides and L. japonica. In addition, the differential markers were screened, and these differential markers were quantitatively analyzed by the targeted method. The non-targeted elemental metabolomics showed that the established mathematical model could reflect the difference in element content between L. macranthoides and L. japonica. Four inorganic elements such as ~(55)Mn, ~(209)Bi, ~(111)Cd, and ~(85)Rb were confirmed as the differential markers of L. macranthoides and L. japonica based on the screening principles of variable importance in the projection(VIP) value>2.0, P<0.01 and fold change(FC) value>1.2 or <0.80. The targeted quantitative results showed that the content of ~(209)Bi in L. japonica was significantly higher than that in L. macranthoides, while ~(55)Mn, ~(111)Cd, and ~(85)Rb in L. macranthoides were significantly higher than that in L. japonica. The non-targeted and targeted elemental metabolomics methods based on ICP-MS can significantly reflect the overall differences in inorganic elements between L. macranthoides and L. japonica. Exploring the differences between them from the perspective of elements can partly reflect the differences in their drug properties and lay a foundation for further study on the quality control mode of inorganic elements in L. macranthoides and L. japonica and their pharmacological effects.


Asunto(s)
Lonicera , Espectrometría de Masas , Metabolómica , Control de Calidad , Lonicera/química , Espectrometría de Masas/métodos , Metabolómica/métodos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/análisis
17.
J Am Chem Soc ; 146(29): 20205-20212, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39007348

RESUMEN

Incipient ferroelectrics have emerged as an attractive class of functional materials owing to their potential to be engineered for exotic ferroelectric behavior, holding great promise for expanding the ferroelectric family. However, thus far, their artificially engineered ferroelectricity has fallen far short of rivaling classic ferroelectrics. In this study, we address this challenge by developing a superfine nanodomain engineering strategy. By applying this approach to representative incipient ferroelectric of SrTiO3-based films, we achieve unprecedentedly strong ferroelectricity, not only surpassing previous records for incipient ferroelectrics but also being comparable to classic ferroelectrics. The remanent polarization of the thin film reaches up to 17.0 µC cm-2 with an ultrahigh Curie temperature of 973 K. Atomic-scale investigations elucidate the origin of this robust ferroelectricity in the emergent high-density superfine nanodomains spanning merely 3-10 unit cells. Combining experimental results with theoretical assessments, we unveil the underlying mechanism, where the intentionally introduced diluted foreign Fe element creates a deeper Landau energy well and promotes a short-range ordering of polarization. Our developed strategy significantly streamlines the design of unconventional ferroelectrics, providing a versatile pathway for exploring new and superior ferroelectric materials.

18.
iScience ; 27(6): 109798, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38947509

RESUMEN

High salt (HS) consumption is a risk factor for multiple autoimmune disorders via disturbing immune homeostasis. Nevertheless, the exact mechanisms by which HS exacerbates rheumatoid arthritis (RA) pathogenesis remain poorly defined. Herein, we found that heightened phosphorylation of PDPK1 and SGK1 upon HS exposure attenuated FoxO1 expression to enhance the glycolytic capacity of CD4 T cells, resulting in strengthened Th17 but compromised Treg program. GSK2334470 (GSK), a dual PDPK1/SGK1 inhibitor, effectively mitigated the HS-induced enhancement in glycolytic capacity and the overproduction of IL-17A. Therefore, administration of GSK markedly alleviated HS-exacerbated RA progression in collagen-induced arthritis (CIA) model. Collectively, our data indicate that HS consumption subverts Th17/Treg homeostasis through the PDPK1-SGK1-FoxO1 signaling, while GSK could be a viable drug against RA progression in clinical settings.

19.
Huan Jing Ke Xue ; 45(7): 3828-3838, 2024 Jul 08.
Artículo en Chino | MEDLINE | ID: mdl-39022931

RESUMEN

Based on a typical ozone (O3) pollution process in Jinan City from June 16 to 26, 2021, the variation characteristics of O3 and its precursor volatile organic compounds (VOCs) during different pollution periods (clean period (CP), pollution rise period (PRP), heavy pollution period (HPP), and pollution decline period (PDP)) in the urban area were analyzed. Both positive matrix factorization (PMF) and an observation-based model (OBM) were used to identify the main sources of VOCs, O3 production mechanisms, and sensitive species. The results showed that the average value of ρ(O3-8h) during the HPP period in the urban area was (246.67±11.24) µg·m-3, and ρ(O3-1h) had a peak value of 300 µg·m-3. The volume fractions of VOCs and NO2 concentration were affected by the decrease in planetary boundary layer and wind speed, which were 76.99%-145.36% and 127.78%-141.18% higher than those in the other three periods, respectively, and were the main reasons for the aggravation of O3 pollution. Alkanes, oxygenated volatile organic compounds (OVOCs), and halogenated hydrocarbons accounted for 43.81%, 20.98%, and 17.43% of VOCs in urban areas, respectively. All of them showed significant growth during the HPP period, with acetone, propane, and ethane being the top three species by volume in each stage and isopentane showing the highest growth during the HPP period. Alkene, alkanes, and aromatic hydrocarbons accounted for 40.19%, 28.06%, and 21.92% of the ozone generation potential (OFP). 1-butene, toluene, isopentane, and isoprene were the species with higher OFP. Isoprene had the highest OFP during the PRP phase, and 1-butene had the highest OFP during the HPP phase. The volume fraction of isopentane significantly increased OFP. The correlation coefficient between VOCs and CO preliminarily indicated that motor vehicle exhaust and oil and gas volatilization were the main sources of VOCs during the HPP period. Further use of PMF revealed that solvent use sources, combustion sources, motor vehicle exhaust+oil and gas volatilization sources, industrial emission sources, and plant sources were important sources of VOCs in urban areas. The contribution of motor vehicle exhaust+oil and gas volatilization sources in the HPP period to VOCs was 3.09-14.72 times higher than that in other periods. The contribution of solvent use sources to VOCs was approximately 2.50 times higher than that in the CP and PRP periods. The main sources of VOCs volume fraction increase were motor vehicle exhaust, oil and gas volatilization sources, and solvent use sources. Potential sources and concentration weight analysis found that VOCs were also affected by the transmission of VOCs to Binzhou and Dongying in the northeast direction. The OBM results indicated that the main pathway of O3 formation in urban areas was the reaction of peroxide hydroxyl radicals (HO2·ï¼‰ and methyl peroxide radicals (CH3O2·ï¼‰ with NO, and the net ozone generation rate during the HPP phase [P(O3)net] was 24×10-9 h-1. Based on the sensitivity experiment results, the alkene components of 1-butene, propylene, cis-2-butene, and ethylene were the dominant species for O3 production.

20.
Front Pharmacol ; 15: 1394816, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39021831

RESUMEN

The pursuit of effective treatments for brain tumors has increasingly focused on the promising area of nanoparticle-enhanced radiotherapy (NERT). This review elucidates the context and significance of NERT, with a particular emphasis on its application in brain tumor therapy-a field where traditional treatments often encounter obstacles due to the blood-brain barrier (BBB) and tumor cells' inherent resistance. The aims of this review include synthesizing recent advancements, analyzing action mechanisms, and assessing the clinical potential and challenges associated with nanoparticle (NP) use in radiotherapy enhancement. Preliminary preclinical studies have established a foundation for NERT, demonstrating that nanoparticles (NPs) can serve as radiosensitizers, thereby intensifying radiotherapy's efficacy. Investigations into various NP types, such as metallic, magnetic, and polymeric, have each unveiled distinct interactions with ionizing radiation, leading to an augmented destruction of tumor cells. These interactions, encompassing physical dose enhancement and biological and chemical radio sensitization, are crucial to the NERT strategy. Although clinical studies are in their early phases, initial trials have shown promising results in terms of tumor response rates and survival, albeit with mindful consideration of toxicity profiles. This review examines pivotal studies affirming NERT's efficacy and safety. NPs have the potential to revolutionize radiotherapy by overcoming challenges in targeted delivery, reducing off-target effects, and harmonizing with other modalities. Future directions include refining NP formulations, personalizing therapies, and navigating regulatory pathways. NERT holds promise to transform brain tumor treatment and provide hope for patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...