Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Sensors (Basel) ; 24(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38894183

RESUMEN

The variability and regularity of stride time may help identify individuals at a greater risk of injury during military load carriage. Wearable sensors could provide a cost-effective, portable solution for recording these measures, but establishing their validity is necessary. This study aimed to determine the agreement of several measures of stride time variability across five wearable sensors (Opal APDM, Vicon Blue Trident, Axivity, Plantiga, Xsens DOT) and force plates during military load carriage. Nineteen Australian Army trainee soldiers (age: 24.8 ± 5.3 years, height: 1.77 ± 0.09 m, body mass: 79.5 ± 15.2 kg, service: 1.7 ± 1.7 years) completed three 12-min walking trials on an instrumented treadmill at 5.5 km/h, carrying 23 kg of an external load. Simultaneously, 512 stride time intervals were identified from treadmill-embedded force plates and each sensor where linear (standard deviation and coefficient of variation) and non-linear (detrended fluctuation analysis and sample entropy) measures were obtained. Sensor and force plate agreement was evaluated using Pearson's r and intraclass correlation coefficients. All sensors had at least moderate agreement (ICC > 0.5) and a strong positive correlation (r > 0.5). These results suggest wearable devices could be employed to quantify linear and non-linear measures of stride time variability during military load carriage.


Asunto(s)
Personal Militar , Dispositivos Electrónicos Vestibles , Humanos , Adulto , Masculino , Adulto Joven , Caminata/fisiología , Soporte de Peso/fisiología , Marcha/fisiología , Fenómenos Biomecánicos/fisiología , Prueba de Esfuerzo/instrumentación , Prueba de Esfuerzo/métodos
2.
Gait Posture ; 111: 14-21, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38608470

RESUMEN

BACKGROUND: Balance deficits are a major concern for people with multiple sclerosis (pwMS). Measuring complexity of motor behaviour can offer an insight into MS-related changes in adaptability of the balance control system when dealing with increasingly complex tasks. QUESTION: Does postural behaviour complexity differ between pwMS at early stages of the disease and healthy controls (HC)? Does postural behaviour complexity change across increasingly complex tasks? METHODS: Forty-eight pwMS and 24 HC performed four increasingly complex postural tasks with eyes open (EO), eyes closed (EC), on firm (FS) and compliant surface (CS). Lumbar and sternum sensors recorded 3D acceleration, from which complexity index (CI) was calculated using multiscale sample entropy (MSE) in the frontal and sagittal planes. RESULTS: We found that only the complexity index in both planes during the eyes closed on compliant surface (EC-CS) task was significantly lower in pwMS compared to HC. We also found that complexity in pwMS was significantly lower during EC-CS compared to the other three tasks when using both lumbar and sternum sensors. SIGNIFICANCE: Increasing the complexity of postural tasks reduces the complexity of postural behaviour in pwMS. This paradox may reflect reduced adaptability of the sensorimotor integration processes at early stages of MS. CI can provide a different perspective on balance deficits and could potentially be a more sensitive biomarker of MS progression and an early indicator of balance deficit.


Asunto(s)
Esclerosis Múltiple , Equilibrio Postural , Humanos , Equilibrio Postural/fisiología , Femenino , Masculino , Adulto , Esclerosis Múltiple/fisiopatología , Persona de Mediana Edad , Estudios de Casos y Controles
3.
Sensors (Basel) ; 24(3)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38339590

RESUMEN

Postural impairment in people with multiple sclerosis (pwMS) is an early indicator of disease progression. Common measures of disease assessment are not sensitive to early-stage MS. Sample entropy (SE) may better identify early impairments. We compared the sensitivity and specificity of SE with linear measurements, differentiating pwMS (EDSS 0-4) from healthy controls (HC). 58 pwMS (EDSS ≤ 4) and 23 HC performed quiet standing tasks, combining a hard or foam surface with eyes open or eyes closed as a condition. Sway was recorded at the sternum and lumbar spine. Linear measures, mediolateral acceleration range with eyes open, mediolateral jerk with eyes closed, and SE in the anteroposterior and mediolateral directions were calculated. A multivariate ANOVA and AUC-ROC were used to determine between-groups differences and discriminative ability, respectively. Mild MS (EDSS ≤ 2.0) discriminability was secondarily assessed. Significantly lower SE was observed under most conditions in pwMS compared to HC, except for lumbar and sternum SE when on a hard surface with eyes closed and in the anteroposterior direction, which also offered the strongest discriminability (AUC = 0.747), even for mild MS. Overall, between-groups differences were task-dependent, and SE (anteroposterior, hard surface, eyes closed) was the best pwMS classifier. SE may prove a useful tool to detect subtle MS progression and intervention effectiveness.


Asunto(s)
Esclerosis Múltiple , Humanos , Esclerosis Múltiple/diagnóstico , Entropía , Equilibrio Postural , Posición de Pie , Aceleración
4.
Gait Posture ; 102: 39-42, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36889202

RESUMEN

BACKGROUND: The local divergence exponent (LDE) has been used to assess gait stability in people with multiple sclerosis (pwMS). Although previous studies have consistently found that stability is lower in pwMS, inconsistent methodologies have been used to assess patients with a broad range of disability levels. QUESTIONS: What sensor location and movement direction(s) are better able to classify pwMS at early stages of the disease? METHODS: 49 pwMS with EDSS ≤ 2.5 and 24 healthy controls walked overground for 5 min while 3D acceleration data was obtained from sensors placed at the sternum (STR) and lumbar (LUM) areas. Unidirectional (vertical [VT], mediolateral [ML], and anteroposterior [AP]) and 3-dimensional (3D) LDEs were calculated using STR and LUM data over 150 strides. ROC analyses were performed to assess classification models using single and combined LDEs, with and without velocity per lap (VELLAP) as a covariate. RESULTS: Four models performed equally well by using combinations of VELLAP, LUM3D, LUMVT, LUMML, LUMAP, STRML, and STRAP (AUC = 0.879). The best model using single sensor LDEs included VELLAP, STR3D, STRML, and STRAP (AUC = 0.878), whereas using VELLAP + STRVT (AUC = 0.869) or VELLAP + STR3D (AUC=0.858) performed best using a single LDE. SIGNIFICANCE: The LDE offers an alternative to currently insensitive tests of gait impairment in pwMS at early stages, when deterioration is not clinically evident. For clinical purposes, the implementation of this measure can be simplified using a single sensor at the sternum and a single LDE measure, but speed should be considered. Longitudinal studies to determine the predictive power and responsiveness of the LDE to MS progression are still needed.


Asunto(s)
Esclerosis Múltiple , Humanos , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/diagnóstico , Marcha , Caminata , Movimiento , Equilibrio Postural
5.
Ergonomics ; 66(9): 1246-1254, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36326486

RESUMEN

Gait stability in soldiers can be affected by task constraints that may lead to injuries. This study determined the effects of weapon handling and speed on gait stability in seventeen soldiers walking on a treadmill with and without a replica weapon at self-selected (SS), 3.5 km·h-1, 5.5 km·h-1, and 6.5 km·h-1 while carrying a 23-kg load. Local dynamic stability was measured using accelerometry at the sacrum (LDESAC) and sternum (LDESTR). No significant weapon and speed interaction were found. A significant effect of speed for the LDESAC, and a significant effect of speed and weapon for the LDESTR were found. Per plane analyses showed that the weapon effect was consistent across all directions for the LDESTR but not for LDESAC. Weapon handling increased trunk but did not affect pelvis stability. Speed decreased stability when walking slower than SS and increased when faster. These findings can inform injury prevention strategies in the military. Practitioner summary: We determined the effects of two constraints in soldier's walking stability, weapon handling and speed, measured at the trunk and sacrum. No constraints interactions were found, however, lower stability when walking slow and greater stability with the weapon at the trunk can inform preventive strategies in military training.


Asunto(s)
Personal Militar , Humanos , Marcha , Caminata , Pelvis , Fenómenos Biomecánicos
6.
Mult Scler Relat Disord ; 63: 103933, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35671672

RESUMEN

BACKGROUND: People with Multiple Sclerosis (PwMS) were first able to access COVID-19 vaccines in Australia from March 2021, when vaccine hesitancy in the general population was high (14-43%). High uptake of vaccination is important globally and critical to protect this vulnerable population. We conducted an on-line survey to examine factors influencing COVID-19 vaccination willingness among PwMS in Australia. METHODS: 149 PwMS living in Australia completed the on-line survey (April-September 2021) examining demographic, environmental and clinical factors with respect to vaccine willingness, including attitudes towards COVID-19 illness and vaccines. Additional items explored the influence of different information sources on vaccination decisions. Continuous and ordinal data were compared using the Mann-Whitney U test. All tests were two-tailed, with alpha set at 0.5. RESULTS: A majority of the respondents were female (87.2%) with relapsing-remitting MS (77.5%) treated by a neurologist (94.0%). A majority were on high efficacy disease-modifying therapies (DMTs) (64.9%), while 19.9% were on no DMTs. About one third of respondents (32.9%) had had two doses, 20.8% had received their first dose, and 22.1% were unvaccinated, while 24.2% of responses were missing. When asked about vaccine intentions, 60.6% of the unvaccinated indicated they were likely to extremely likely to get vaccinated, while 15.2% were very unlikely or extremely unlikely to do so and 24.2% were undecided. Unvaccinated people were significantly more concerned about vaccine side effects (mean 5.3 versus 3.1/10; p < .001). Only 53.3% of people on DMTs were vaccinated, compared to 75% of those who were not. People on ocrelizumab therapy (n = 35) had a lower vaccination rate (39%) than those on other medications (n = 86, 59%). Vaccine willingness in the unvaccinated was most highly correlated with knowledge regarding the vaccine (rs2=.709), agreement with the statement that COVID-19 vaccination is "too new for me to be confident about getting vaccinated" (rs2= -.709), anticipation of regret due to side effects of vaccination (rs2= -.642), and lack of knowledge regarding interactions between COVID-19 vaccines and DMTs (rs2= -.570). Almost two thirds had read MS-specific information about COVID-19 vaccinations and found it easy to understand (67.6%) and applicable to their situation (53.6%). However, less than half (47.8%) reported the information helped them make a personal vaccination decision. Over two-thirds (64.9%) had discussed vaccinations with their healthcare professional and 31.1% had not. Those who had not, were significantly more uninformed about the interactions of the vaccine with MS medications (mean 3.9 versus 2.9/10; p = .044) and significantly lower intention of vaccine uptake than those who had (mean 5.8 versus 7.9/10; p = .009). CONCLUSION: Our study highlights that vaccination efforts should be delivered by healthcare professionals, focus on educating those who are managed with DMTs, and include individual recommendations related to specific DMTs, how the vaccines work, expectations regarding potential side-effects, potential exacerbation of MS symptoms, likelihood of recovery from any exacerbation, and the relative risks of side effects versus COVID-19 infection. Specific recommendations are provided.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Esclerosis Múltiple , Vacilación a la Vacunación , Vacunación , Australia , COVID-19/prevención & control , Vacunas contra la COVID-19/administración & dosificación , Comunicación , Femenino , Conocimientos, Actitudes y Práctica en Salud , Humanos , Masculino , Relaciones Profesional-Paciente , Vacunación/psicología
7.
Mult Scler ; 28(11): 1773-1782, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35603749

RESUMEN

BACKGROUND: Gait in people with multiple sclerosis (PwMS) is affected even when no changes can be observed on clinical examination. A sensitive measure of gait deterioration is stability; however, its correlation with motor tract damage has not yet been established. OBJECTIVE: To compare stability between PwMS and healthy controls (HCs) and determine associations between stability and diffusion magnetic resonance image (MRI) measures of axonal damage in selected sensorimotor tracts. METHODS: Twenty-five PwMS (Expanded Disability Status Scale (EDSS) < 2.5) and 15 HCs walked on a treadmill. Stability from sacrum (LDESAC), shoulder (LDESHO) and cervical (LDECER) was calculated using the local divergence exponent (LDE). Participants underwent a 7T-MRI brain scan to obtain fibre-specific measures of axonal loss within the corticospinal tract (CST), interhemispheric sensorimotor tract (IHST) and cerebellothalamic tract (CTT). Correlation analyses between LDE and fibre density (FD) within tracts, fibre cross-section (FC) and FD modulated by FC (FDC) were conducted. Between-groups LDE differences were analysed using analysis of variance (ANOVA). RESULTS: Correlations between all stability measures with CSTFD, between CSTFDC with LDESAC and LDECER, and LDECER with IHSTFD and IHSTFDC were significant yet moderate (R < -0.4). Stability was significantly different between groups. CONCLUSIONS: Poorer gait stability is associated with corticospinal tract (CST) axonal loss in PwMS with no-to-low disability and is a sensitive indicator of neurodegeneration.


Asunto(s)
Esclerosis Múltiple , Prueba de Esfuerzo/métodos , Marcha , Humanos , Esclerosis Múltiple/patología , Tractos Piramidales/diagnóstico por imagen , Tractos Piramidales/patología , Caminata
8.
Brain Commun ; 3(2): fcab032, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34222866

RESUMEN

Multiple sclerosis is a neuroinflammatory disease of the CNS that is associated with significant irreversible neuro-axonal loss, leading to permanent disability. There is thus an urgent need for in vivo markers of axonal loss for use in patient monitoring or as end-points for trials of neuroprotective agents. Advanced diffusion MRI can provide markers of diffuse loss of axonal fibre density or atrophy within specific white matter pathways. These markers can be interrogated in specific white matter tracts that underpin important functional domains such as sensorimotor function. This study aimed to evaluate advanced diffusion MRI markers of axonal loss within the major sensorimotor tracts of the brain, and to correlate the degree of axonal loss in these tracts to precise kinematic measures of hand and foot motor control and gait in minimally disabled people with multiple sclerosis. Twenty-eight patients (Expanded Disability Status Scale < 4, and Kurtzke Functional System Scores for pyramidal and cerebellar function ≤ 2) and 18 healthy subjects underwent ultra-high field 7 Tesla diffusion MRI for calculation of fibre-specific measures of axonal loss (fibre density, reflecting diffuse axonal loss and fibre cross-section reflecting tract atrophy) within three tracts: cortico-spinal tract, interhemispheric sensorimotor tract and cerebello-thalamic tracts. A visually guided force-matching task involving either the hand or foot was used to assess visuomotor control, and three-dimensional marker-based video tracking was used to assess gait. Fibre-specific axonal markers for each tract were compared between groups and correlated with visuomotor task performance (force error and lag) and gait parameters (stance, stride length, step width, single and double support) in patients. Patients displayed significant regional loss of fibre cross-section with minimal loss of fibre density in all tracts of interest compared to healthy subjects (family-wise error corrected p-value < 0.05), despite relatively few focal lesions within these tracts. In patients, reduced axonal fibre density and cross-section within the corticospinal tracts and interhemispheric sensorimotor tracts were associated with larger force tracking error and gait impairments (shorter stance, smaller step width and longer double support) (family-wise error corrected p-value < 0.05). In conclusion, significant gait and motor control impairments can be detected in minimally disabled people with multiple sclerosis that correlated with axonal loss in major sensorimotor pathways of the brain. Given that axonal loss is irreversible, the combined use of advanced imaging and kinematic markers could be used to identify patients at risk of more severe motor impairments as they emerge for more aggressive therapeutic interventions.

9.
J Parkinsons Dis ; 11(3): 1367-1380, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33749618

RESUMEN

BACKGROUND: People with Parkinson's disease and freezing of gait (FOG; freezers) suffer from pronounced postural instability. However, the relationship between these phenomena remains unclear and has mostly been tested in paradigms requiring step generation. OBJECTIVE: To determine if freezing-related dynamic balance deficits are present during a task without stepping and determine the influence of dopaminergic medication on dynamic balance control. METHODS: Twenty-two freezers, 16 non-freezers, and 20 healthy age-matched controls performed mediolateral weight-shifts at increasing frequencies when following a visual target projected on a screen (MELBA task). The amplitude and phase shift differences between center of mass and target motion were measured. Balance scores (Mini-BESTest), 360° turning speed and the freezing ratio were also measured. Subjects with Parkinson's disease were tested ON and partial OFF (overnight withdrawal) dopaminergic medication. RESULTS: Freezers had comparable turning speed and balance scores to non-freezers and took more levodopa. Freezers produced hypokinetic weight-shift amplitudes throughout the MELBA task compared to non-freezers (p = 0.002), which were already present at task onset (p < 0.001). Freezers also displayed an earlier weight-shift breakdown than controls when OFF-medication (p = 0.008). Medication improved mediolateral weight-shifting in freezers and non-freezers. Freezers decreased their freezing ratio in response to medication. CONCLUSION: Hypokinetic weight-shifting proved a marked postural control deficit in freezers, while balance scores and turning speed were similar to non-freezers. Both weight-shift amplitudes and the freezing ratio were responsive to medication in freezers, suggesting axial motor vigor is levodopa-responsive. Future work needs to test whether weight-shifting and freezing severity can be further ameliorated through training.


Asunto(s)
Trastornos Neurológicos de la Marcha , Enfermedad de Parkinson , Trastornos Neurológicos de la Marcha/tratamiento farmacológico , Trastornos Neurológicos de la Marcha/etiología , Humanos , Levodopa/uso terapéutico , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/tratamiento farmacológico
10.
Eur J Neurol ; 28(1): 259-268, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32916031

RESUMEN

BACKGROUND AND PURPOSE: Objective measurement of speech has shown promising results to monitor disease state in multiple sclerosis. In this study, we characterize the relationship between disease severity and speech metrics through perceptual (listener based) and objective acoustic analysis. We further look at deviations of acoustic metrics in people with no perceivable dysarthria. METHODS: Correlations and regression were calculated between speech measurements and disability scores, brain volume, lesion load and quality of life. Speech measurements were further compared between three subgroups of increasing overall neurological disability: mild (as rated by the Expanded Disability Status Scale ≤2.5), moderate (≥3 and ≤5.5) and severe (≥6). RESULTS: Clinical speech impairment occurred majorly in people with severe disability. An experimental acoustic composite score differentiated mild from moderate (P < 0.001) and moderate from severe subgroups (P = 0.003), and correlated with overall neurological disability (r = 0.6, P < 0.001), quality of life (r = 0.5, P < 0.001), white matter volume (r = 0.3, P = 0.007) and lesion load (r = 0.3, P = 0.008). Acoustic metrics also correlated with disability scores in people with no perceivable dysarthria. CONCLUSIONS: Acoustic analysis offers a valuable insight into the development of speech impairment in multiple sclerosis. These results highlight the potential of automated analysis of speech to assist in monitoring disease progression and treatment response.


Asunto(s)
Esclerosis Múltiple , Calidad de Vida , Benchmarking , Encéfalo/diagnóstico por imagen , Evaluación de la Discapacidad , Humanos , Imagen por Resonancia Magnética , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/diagnóstico por imagen , Neuroimagen , Habla
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA