Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bio Protoc ; 14(13): e5027, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39007162

RESUMEN

Intravesical instillation is an efficient therapeutic technique based on targeted administration of a drug directly into the lesion for the treatment of bladder diseases. This is an alternative to traditional systemic administration of drugs. However, this technique requires repeated procedures, which can lead to even greater inflammation and infection of the urethra. To date, novel systems that allow prolonged drug retention in the bladder cavity are actively being developed. We recently reported a targeted drug delivery system based on the mucoadhesive emulsion microgels consisting of the natural component whey protein isolate. Such micron-sized carriers possess high loading capacity, a prolonged drug release profile, and efficient mucoadhesive properties to the bladder urothelium. As a continuation of this work, we present a protocol for the synthesis of mucoadhesive emulsion microgels. Detailed procedures for preparing precursor solutions as well as studying the physico-chemical parameters of microgels (including loading capacity and drug release rate) and the mucoadhesive properties using the model of porcine bladder urothelium are discussed. Precautionary measures and nuances that are worth paying attention to during each experimental stage are given as well. Key features • The protocol for the synthesis of mucoadhesive emulsion microgels based on whey protein isolate is presented. The experimental conditions of emulsion microgels synthesis are discussed. • Methods for studying the physico-chemical properties of mucoadhesive emulsion microgels (size of emulsion microgels particles, loading capacity, release kinetics) are described. • The method for assessing mucoadhesive properties of emulsion microgels is demonstrated using the porcine bladder tissue model ex vivo.

2.
ACS Appl Mater Interfaces ; 15(21): 25354-25368, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37204221

RESUMEN

The intravesical instillation procedure is a proven method in modern urology for the treatment of bladder diseases. However, the low therapeutic efficiency and painfulness of the instillation procedure are significant limitations of this method. In the present study, we propose an approach to solving this problem by using microsized mucoadhesive macromolecular carriers based on whey protein isolate with the possibility of prolonged release of drugs as a drug delivery system. The optimal water-to-oil ratio (1:3) and whey protein isolate concentration (5%) were determined to obtain emulsion microgels with sufficient loading efficiency and mucoadhesive properties. The droplet diameter of emulsion microgels varies from 2.2 to 3.8 µm. The drug release kinetics from the emulsion microgels was evaluated. The release of the model dye in saline and artificial urine in vitro was observed for 96 h and reached up to 70% of loaded cargo for samples. The effect of emulsion microgels on the morphology and viability of two cell lines was observed: L929 mouse fibroblasts (normal adherent cells) and THP-1 human monocytes (cancer suspension cells). Developed emulsion microgels (5%, 1:3 and 1:5) showed sufficient mucoadhesion to a porcine bladder urothelium ex vivo. The biodistribution of emulsion microgels (5%, 1:3 and 1:5) in mice (n = 3) after intravesical (instillation) and systemic (intravenous) administration was assessed in vivo and ex vivo using near-infrared fluorescence live imaging for real time. It was demonstrated that intravesical instillation allows approximately 10 times more efficient accumulation of emulsion microgels in the mice urinary bladder in vivo 1 h after injection compared to systemic injection. The retention of the emulsion of mucoadhesive microgels in bladders after the intravesical instillation was observed for 24 h.


Asunto(s)
Microgeles , Neoplasias de la Vejiga Urinaria , Ratones , Humanos , Animales , Porcinos , Distribución Tisular , Urotelio/metabolismo , Emulsiones/farmacología , Proteína de Suero de Leche/metabolismo , Proteína de Suero de Leche/farmacología , Proteína de Suero de Leche/uso terapéutico , Sistemas de Liberación de Medicamentos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...