Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Polymers (Basel) ; 15(23)2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38231902

RESUMEN

Diabetic foot ulcers (DFUs) are considered one of the most severe chronic complications of diabetes and can lead to amputation in severe cases. In addition, bacterial infections in diabetic chronic wounds aggravate this scenario by threatening human health. Wound dressings made of polymer matrices with embedded metal nanoparticles can inhibit microorganism growth and promote wound healing, although the current clinical treatments for diabetic chronic wounds remain unsatisfactory. In this view, this research reports the synthesis and characterization of innovative hybrid hydrogels made of carboxymethyl cellulose (CMC) and poly(vinyl alcohol) (PVA) chemically crosslinked by citric acid (CA) functionalized with silver nanoparticles (AgNPs) generated in situ using an eco-friendly aqueous process. The results assessed through comprehensive in vitro and in vivo assays demonstrated that these hybrid polymer hydrogels functionalized with AgNPs possess physicochemical properties, cytocompatibility, hemocompatibility, bioadhesion, antibacterial activity, and biocompatibility suitable for wound dressings to support chronic wound healing process as well as preventing and treating bacterial infections. Hence, it can be envisioned that, with further research and development, these polymer-based hybrid nanoplatforms hold great potential as an important tool for creating a new generation of smart dressings for treating chronic diabetic wounds and opportunistic bacterial infections.

2.
Pharmaceutics ; 14(10)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36297660

RESUMEN

Glioblastoma remains the most lethal form of brain cancer, where hybrid nanomaterials biofunctionalized with polysaccharide peptides offer disruptive strategies relying on passive/active targeting and multimodal therapy for killing cancer cells. Thus, in this research, we report for the first time the rational design and synthesis of novel hybrid colloidal nanostructures composed of gold nanoparticles stabilized by trisodium citrate (AuNP@TSC) as the oxidase-like nanozyme, coupled with cobalt-doped superparamagnetic iron oxide nanoparticles stabilized by carboxymethylcellulose ligands (Co-MION@CMC) as the peroxidase-like nanozyme. They formed inorganic-inorganic dual-nanozyme systems functionalized by a carboxymethylcellulose biopolymer organic shell, which can trigger a biocatalytic cascade reaction in the cancer tumor microenvironment for the combination of magnetothermal-chemodynamic therapy. These nanoassemblies were produced through a green aqueous process under mild conditions and chemically biofunctionalized with integrin-targeting peptide (iRDG), creating bioengineered nanocarriers. The results demonstrated that the oxidase-like nanozyme (AuNP) was produced with a crystalline face-centered cubic nanostructure, spherical morphology (diameter = 16 ± 3 nm), zeta potential (ZP) of -50 ± 5 mV, and hydrodynamic diameter (DH) of 15 ± 1 nm. The peroxide-like nanostructure (POD, Co-MION@CMC) contained an inorganic crystalline core of magnetite and had a uniform spherical shape (2R = 7 ± 1 nm) which, summed to the contribution of the CMC shell, rendered a hydrodynamic diameter of 45 ± 4 nm and a negative surface charge (ZP = -41 ± 5 mV). Upon coupling both nanozymes, water-dispersible colloidal supramolecular vesicle-like organic-inorganic nanostructures were produced (AuNP//Co-MION@CMC, ZP = -45 ± 4 mV and DH = 28 ± 3 nm). They confirmed dual-nanozyme cascade biocatalytic activity targeted by polymer-peptide conjugates (AuNP//Co-MION@CMC_iRGD, ZP = -29 ± 3 mV and DH = 60 ± 4 nm) to kill brain cancer cells (i.e., bioenergy "starvation" by glucose deprivation and oxidative stress through reactive oxygen species generation), which was boosted by the magneto-hyperthermotherapy effect when submitted to the alternating magnetic field (i.e., induced local thermal stress by "nanoheaters"). This groundwork offers a wide avenue of opportunities to develop innovative theranostic nanoplatforms with multiple integrated functionalities for fighting cancer and reducing the harsh side effects of conventional chemotherapy.

3.
Int J Biol Macromol ; 210: 530-544, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35513094

RESUMEN

Among the most lethal forms of cancer, malignant brain tumors persist as one of the greatest challenges faced by oncologists, where nanotechnology-driven theranostics can play a critical role in developing novel polymer-based supramolecular nanoarchitectures with multifunctional and multi-modal characteristics to fight cancer. However, it is virtually a consensus that, besides the complexity of active delivering anticancer drugs by the nanocarriers to the tumor site, the current evaluation methods primarily relying on in vitro assays and in vivo animal models have been accounted for the low translational effectiveness to clinical applications. In this view, the chick chorioallantoic membrane (CAM) assay has been increasingly recognized as one of the best preclinical models to study the effects of anticancer drugs on the tumor microenvironment (TME). Thus, in this study, we designed, characterized, and developed novel hybrid nanostructures encompassing chemically functionalized carboxymethylcellulose (CMC) with mitochondria-targeting pro-apoptotic peptide (KLA) and cell-penetrating moiety (cysteine, CYS) with fluorescent inorganic semiconductor (Ag-In-S, AIS) for simultaneously bioimaging and inducing glioblastoma cancer cell (U-87 MG, GBM) death. The results demonstrated that the CMC-peptide macromolecules produced supramolecular vesicle-like nanostructures with aqueous colloidal stability suitable as nanocarriers for passive and active targeting of cancer tumors. The optical properties and physicochemical features of the nanoconjugates confirmed their suitability as photoluminescent nanoprobes for cell bioimaging and intracellular tracking. Moreover, the results in vitro demonstrated a notable killing activity towards GBM cells of cysteine-bearing CMC conjugates coupled with pro-apoptotic KLA peptides. More importantly, compared to doxorubicin (DOX), a model anticancer drug in chemotherapy that is highly toxic, these innovative nanohybrids nanoconjugates displayed higher lethality against U-87 MG cancer cells. In vivo CAM assays validated these findings where the nanohybrids demonstrated a significant reduction of GBM tumor progression (41% area) and evidenced an antiangiogenic activity. These results pave the way for developing polymer-based hybrid nanoarchitectonics applied as targeted multifunctional theranostics for simultaneous imaging and therapy against glioblastoma while possibly reducing the systemic toxicity and side-effects of conventional anticancer chemotherapeutic agents.


Asunto(s)
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Puntos Cuánticos , Animales , Antineoplásicos/química , Neoplasias Encefálicas/tratamiento farmacológico , Carboximetilcelulosa de Sodio/química , Línea Celular Tumoral , Cisteína , Doxorrubicina/química , Glioblastoma/tratamiento farmacológico , Nanoconjugados/uso terapéutico , Polímeros/uso terapéutico , Puntos Cuánticos/química , Nanomedicina Teranóstica , Microambiente Tumoral
4.
Pathogens ; 10(8)2021 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34451447

RESUMEN

Madariaga virus (MADV) is a member of the eastern equine encephalitis virus (EEEV) complex that circulates in Central and South America. It is a zoonotic, mosquito-borne pathogen, belonging to the family Togaviridae. Disturbances in the natural transmission cycle of this virus result in outbreaks in equines and humans, leading to high case fatality in the former and acute febrile illness or neurological disease in the latter. Although a considerable amount of knowledge exists on the eco-epidemiology of North American EEEV strains, little is known about MADV. In Brazil, the most recent isolations of MADV occurred in 2009 in the States of Paraíba and Ceará, northeast Brazil. Because of that, health authorities have recommended vaccination of animals in these regions. However, in 2019 an equine encephalitis outbreak was reported in a municipality in Ceará. Here, we present the isolation of MADV from two horses that died in this outbreak. The full-length genome of these viruses was sequenced, and phylogenetic analyses performed. Pathological findings from postmortem examination are also discussed. We conclude that MADV is actively circulating in northeast Brazil despite vaccination programs, and call attention to this arbovirus that likely represents an emerging pathogen in Latin America.

5.
Braz J Microbiol ; 52(3): 1623-1626, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34081316

RESUMEN

Bluetongue virus (BTV) is an RNA virus that infects cattle and sheep. The objective of this study was to compare two real-time PCRs for the detection of BTV and to monitor Orbivirus viremia in sheep and cattle for 6 months. The PCR results showed the occurrence of infected animals throughout the experiment without records of clinical signs. The number of positive animals reduced during the experiment, but some animals were positive for BTV RNA during the entire experiment. The performance of the two RT-qPCRs for BTV detection techniques used in this work revealed a kappa index of 0.71 for cattle and 0.75 for sheep.


Asunto(s)
Virus de la Lengua Azul , Lengua Azul , Enfermedades de los Bovinos , Viremia , Animales , Lengua Azul/diagnóstico , Virus de la Lengua Azul/genética , Bovinos , Enfermedades de los Bovinos/diagnóstico , Enfermedades de los Bovinos/virología , Reacción en Cadena en Tiempo Real de la Polimerasa , Ovinos , Viremia/diagnóstico , Viremia/veterinaria
6.
Int J Biol Macromol ; 182: 1091-1111, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33892028

RESUMEN

Acute or chronic brain injuries promote deaths and the life-long debilitating neurological status where, despite advances in therapeutic strategies, clinical outcome hardly achieves total patient recovery. In recent decades, brain tissue engineering emerged as an encouraging area of research for helping in damaged central nervous system (CNS) recovery. Polysaccharides are abundant naturally occurring biomacromolecules with a great potential enhancement of advanced technologies in brain tissue repair and regeneration (BTRR). Besides carrying rich biological information, polysaccharides can interact and communicate with biomolecules, including glycosaminoglycans present in cell membranes and many signaling moieties, growth factors, chemokines, and axon guidance molecules. This review includes a comprehensive investigation of the current progress on designing and developing polysaccharide-based soft matter biomaterials for BTRR. Although few interesting reviews concerning BTRR have been reported, this is the first report specifically focusing on covering multiple polysaccharides and polysaccharide-based functionalized biomacromolecules in this emerging and intriguing field of multidisciplinary knowledge. This review aims to cover the state of art challenges and prospects of this fascinating field while presenting the richness of possibilities of using these natural biomacromolecules for advanced biomaterials in prospective neural tissue engineering applications.


Asunto(s)
Materiales Biocompatibles/química , Hidrogeles/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Ingeniería Biomédica/métodos , Humanos
7.
Mater Lett ; 277: 128279, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32834256

RESUMEN

The earliest possible diagnosis and understanding of the infection mechanisms play a crucial role in the outcome of fighting viral diseases. Thus, we designed and developed for the first time, novel bioconjugates made of Ag-In-S@ZnS (ZAIS) fluorescent quantum dots coupled with ZIKA virus via covalent amide bond with carboxymethylcellulose (CMC) biopolymer for labeling and bioimaging the virus-host cell interactions mechanisms through confocal laser scanning microscopy. This work offers relevant insights regarding the profile of the ZIKA virus-nanoparticle conjugates interactions with VERO cells, which can be applied as a nanoplatform to elucidate the infection mechanisms caused by this viral disease.

8.
J Mater Chem B ; 8(32): 7166-7188, 2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32614035

RESUMEN

Despite the undeniable advances in recent decades, cancer remains one of the deadliest diseases of the current millennium, where the triple-negative breast cancer (TNBC) is very aggressive, extremely metastatic, and resistant to conventional chemotherapy. The nanotheranostic approach focusing on targeting membrane receptors often expressed at abnormal levels by cancer cells can be a strategic weapon for fighting malignant tumors. Herein, we introduced a novel "all-in-one nanosoldier" made of colloidal hybrid nanostructures, which were designed for simultaneously targeting, imaging, and killing TNBC cells. These nanohybrids comprised four distinct components: (a) superparamagnetic iron oxide nanoparticles, as bi-functional nanomaterials for inducing ferroptosis via inorganic nanozyme-mediated catalysis and magnetotherapy by hyperthermia treatment; (b) carboxymethyl cellulose biopolymer, as a water-soluble capping macromolecule; (c) folic acid, as the membranotopic vector for targeting folate receptors; (d) and doxorubicin (DOX) drug for chemotherapy. The results demonstrated that this novel strategy was highly effective for targeting and killing TNBC cells in vitro, expressing high levels of folate membrane-receptors. The results evidenced that three integrated mechanisms triggered the deaths of the cancer cells in vitro: (a) ferroptosis, by magnetite nanoparticles inducing a Fenton-like reaction; (b) magneto-hyperthermia effect by generating heat under an alternate magnetic field; and (c) chemotherapy, through the DOX intracellular release causing DNA dysfunction. This "all-in-one nanosoldier" strategy offers a vast realm of prospective alternatives for attacking cancer cells, combining multimodal therapy and the delivery of therapeutic agents to diseased sites and preserving healthy cells, which is one of the most critical clinical challenges faced in fighting drug-resistant breast cancers.


Asunto(s)
Antineoplásicos/química , Doxorrubicina/química , Colorantes Fluorescentes/química , Nanopartículas de Magnetita/química , Nanocápsulas/química , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Neoplasias de la Mama Triple Negativas/terapia , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Permeabilidad de la Membrana Celular , Terapia Combinada , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Liberación de Fármacos , Receptores de Folato Anclados a GPI/metabolismo , Ácido Fólico/química , Ácido Fólico/metabolismo , Humanos , Hipertermia Inducida/efectos adversos , Campos Magnéticos , Nanopartículas de Magnetita/uso terapéutico , Terapia Molecular Dirigida , Imagen Óptica , Estudios Prospectivos , Especies Reactivas de Oxígeno/metabolismo , Nanomedicina Teranóstica
9.
Pesqui. vet. bras ; 40(4): 261-265, Apr. 2020. tab
Artículo en Inglés | VETINDEX | ID: vti-29465

RESUMEN

Bluetongue is an infectious, non-contagious disease that affects domestic and wild ruminants, caused by a virus from the Orbivirus genus, Reoviridae family, transmitted by arthropod vectors of the Culicoides genus. This paper aims to be the first serological survey of bluetongue in sheep from the Meso-regions of Campo das Vertentes and South and Southeast of Minas Gerais. Samples were collected from sheep from different properties. The serum samples were submitted to Agar Gel Immunodiffusion (AGID) and competitive Enzyme-Linked Immunosorbent Assay (cELISA). 303 serum samples were submitted to AGID and cELISA. In these samples, 164 (54.13%) were positive in the AGID technique, and 171 (56.44%) positive in the cELISA technique, with an almost perfect agreement between the techniques (kappa index = 0.887). In all visited properties, positive animals have been found in the herd. Animals acquired from properties of the studied mesoregions were more likely to be positive in IDGA and cELISA tests than animals acquired from properties in other regions of Brazil (p<0.001). These results suggest that bluetongue virus (BTV) is widespread in the mesoregions of Campo das Vertentes and South and Southeast of Minas Gerais.(AU)


A língua azul (LA) é uma doença infecciosa, não contagiosa, que acomete ruminantes domésticos e silvestres, causada por um vírus do gênero Orbivirus da família Reoviridae, transmitida por vetores artrópodes do gênero Culicoides. O presente estudo representa o primeiro trabalho a realizar um inquérito sorológico da língua azul em rebanhos ovinos nas Mesorregiões de Campo das Vertentes e Sul e Sudoeste de Minas Gerais. Foram coletadas amostras de soro de ovinos de diferentes propriedades. As amostras de soro foram submetidas aos testes de imunodifusão em gel de ágar (IDGA) e ensaio de imunoadsorção enzimática por competição (cELISA). Ao todo 303 amostras de soro foram submetidas ao IDGA e cELISA. Dessas amostras, 164 (54,13%) foram positivas na técnica de IDGA e 171 (56,44%) positivas na técnica de cELISA, havendo concordância quase perfeita entre as técnicas (índice kappa = 0,887). Em todas as propriedades visitadas, foram encontrados animais positivos no rebanho. Animais adquiridos de propriedades das Mesorregiões estudadas, tiveram mais chances de serem positivos nos testes de IDGA e cELISA do que animais adquiridos de propriedades de outras Regiões do Brasil (p<0,001). Esses resultados sugerem que o vírus da língua azul encontra-se disseminado em ovinos nas Mesorregiões de Campo das Vertentes e Sul e Sudoeste de Minas Gerais.(AU)


Asunto(s)
Animales , Orbivirus , Lengua Azul/diagnóstico , Lengua Azul/inmunología , Lengua Azul/epidemiología , Infecciones por Reoviridae/veterinaria , Pruebas Serológicas/veterinaria , Ovinos
10.
Pesqui. vet. bras ; Pesqui. vet. bras;40(4): 261-265, Apr. 2020. tab
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1135624

RESUMEN

Bluetongue is an infectious, non-contagious disease that affects domestic and wild ruminants, caused by a virus from the Orbivirus genus, Reoviridae family, transmitted by arthropod vectors of the Culicoides genus. This paper aims to be the first serological survey of bluetongue in sheep from the Meso-regions of Campo das Vertentes and South and Southeast of Minas Gerais. Samples were collected from sheep from different properties. The serum samples were submitted to Agar Gel Immunodiffusion (AGID) and competitive Enzyme-Linked Immunosorbent Assay (cELISA). 303 serum samples were submitted to AGID and cELISA. In these samples, 164 (54.13%) were positive in the AGID technique, and 171 (56.44%) positive in the cELISA technique, with an almost perfect agreement between the techniques (kappa index = 0.887). In all visited properties, positive animals have been found in the herd. Animals acquired from properties of the studied mesoregions were more likely to be positive in IDGA and cELISA tests than animals acquired from properties in other regions of Brazil (p<0.001). These results suggest that bluetongue virus (BTV) is widespread in the mesoregions of Campo das Vertentes and South and Southeast of Minas Gerais.(AU)


A língua azul (LA) é uma doença infecciosa, não contagiosa, que acomete ruminantes domésticos e silvestres, causada por um vírus do gênero Orbivirus da família Reoviridae, transmitida por vetores artrópodes do gênero Culicoides. O presente estudo representa o primeiro trabalho a realizar um inquérito sorológico da língua azul em rebanhos ovinos nas Mesorregiões de Campo das Vertentes e Sul e Sudoeste de Minas Gerais. Foram coletadas amostras de soro de ovinos de diferentes propriedades. As amostras de soro foram submetidas aos testes de imunodifusão em gel de ágar (IDGA) e ensaio de imunoadsorção enzimática por competição (cELISA). Ao todo 303 amostras de soro foram submetidas ao IDGA e cELISA. Dessas amostras, 164 (54,13%) foram positivas na técnica de IDGA e 171 (56,44%) positivas na técnica de cELISA, havendo concordância quase perfeita entre as técnicas (índice kappa = 0,887). Em todas as propriedades visitadas, foram encontrados animais positivos no rebanho. Animais adquiridos de propriedades das Mesorregiões estudadas, tiveram mais chances de serem positivos nos testes de IDGA e cELISA do que animais adquiridos de propriedades de outras Regiões do Brasil (p<0,001). Esses resultados sugerem que o vírus da língua azul encontra-se disseminado em ovinos nas Mesorregiões de Campo das Vertentes e Sul e Sudoeste de Minas Gerais.(AU)


Asunto(s)
Animales , Orbivirus , Lengua Azul/diagnóstico , Lengua Azul/inmunología , Lengua Azul/epidemiología , Infecciones por Reoviridae/veterinaria , Pruebas Serológicas/veterinaria , Ovinos
11.
Artículo en Inglés | MEDLINE | ID: mdl-30701237

RESUMEN

A new strain of chicken megrivirus was identified in fecal samples of layer chickens in a commercial flock in Minas Gerais, Brazil. It is most closely related to the family Picornaviridae, genus Megrivirus, species Melegrivirus A, and has an overall nucleotide identity of up to 85.1% with other megrivirus strains.

12.
ACS Omega ; 3(11): 15679-15691, 2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30556011

RESUMEN

Many human diseases, including metabolic, immune, and central nervous system disorders, as well as several types of cancers, are the consequence of an important alteration in lipid-related metabolic biomolecules. Although recognized that one of the most important metabolic hallmarks of cancer cells is deregulation of lipid metabolism, the multiple complex signaling pathways are poorly understood yet. Thus, in this research, novel nanoconjugates made of ZnS quantum dots (QDs) were directly synthesized in aqueous media using phosphoethanolamine (PEA) as the capping ligand, which is an important biomolecule naturally present in cells for de novo biosynthesis of fatty acids and phospholipids involved in the cell structure (e.g., membrane), differentiation, and cancer growth. These QD-PEA bio-nanoconjugates were characterized by spectroscopical and morphological techniques. The results demonstrated that fluorescent ZnS nanocrystalline QDs were produced with uniform spherical morphology and estimated sizes of 3.3 ± 0.6 nm. These nanoconjugates indicated core-shell colloidal nanostructures (ZnS QD-PEA) with the hydrodynamic diameter (H D) of 26.0 ± 3.5 nm and ζ-potential centered at -30.0 ± 4.5 mV. The cell viability response using mitochondrial activity assay in vitroconfirmed no cytotoxicity at several concentrations of PEA (biomolecule) and the ZnS-PEA nanoconjugates. Moreover, these nanoconjugates effectively behaved as fluorescent nanomarkers for tracking the endocytic pathways of cancer cells using confocal laser scanning microscopy bioimaging. Hence, these results proved that biofunctionalized ZnS-PEA nanoprobes offer prospective tools for cellular bioimaging with encouraging forecast for future applications as active fluorescent biomarker conjugates in metabolic-related cancer research.

13.
Front Microbiol ; 9: 402, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29568288

RESUMEN

Since 1999 Vaccinia virus (VACV) outbreaks involving bovines and humans have been reported in Brazil; this zoonosis is known as Bovine Vaccinia (BV) and is mainly an occupational disease of milkers. It was only in 2008 (and then again in 2011 and 2014) however, that VACV was found causing natural infections in Brazilian equids. These reports involved only equids, no infected humans or bovines were identified, and the sources of infections remain unknown up to date. The peculiarities of Equine Vaccinia outbreaks (e.g., absence of human infection), the frequently shared environments, and fomites by equids and bovines in Brazilian farms and the remaining gaps in BV epidemiology incited a question over OPV serological status of equids in Brazil. For this report, sera from 621 equids - representing different species, ages, sexes and locations of origin within Minas Gerais State, southeast Brazil - were examined for the presence of anti-Orthopoxvirus (OPV) antibodies. Only 74 of these were sampled during an Equine Vaccinia outbreak, meaning some of these specific animals presented typical lesions of OPV infections. The majority of sera, however, were sampled from animals without typical signs of OPV infection and during the absence of reported Bovine or Equine Vaccinia outbreaks. Results suggest the circulation of VACV among equids of southeast Brazil even prior to the time of the first VACV outbreak in 2008. There is a correlation of OPVs outbreaks among bovines and equids although many gaps remain to our understanding of its nature. The data obtained may even be carefully associated to recent discussion over OPVs history. Moreover, data is available to improve the knowledge and instigate new researches regarding OPVs circulation in Brazil and worldwide.

14.
Vet Res Commun ; 41(4): 317-321, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28836073

RESUMEN

Seneca Valley virus (SVV) is the etiological agent of vesicular disease in pigs, clinically indistinguishable of classical viral vesicular infections, including foot-and-mouth disease. The first outbreaks of SVV infection in Brazil were reported in 2014. However, it was not known whether the virus was circulating in Brazilian pig herds before this year. This study is a retrospective serological investigation of porcine health status to SVV in Brazil. Serum samples (n = 594) were grouped in before (2007-2013, n = 347) and after (2014-2016, n = 247) SVV outbreaks in Brazil. Twenty-three pig herds were analyzed, of which 19 and 4 were sampled before and after the beginning of SVV outbreaks, respectively. Two herds sampled after 2014 presented animals with SVV-associated clinical manifestations, while the other two housed asymptomatic pigs. Anti-SVV antibodies were evaluated by virus neutralization test. The results demonstrated that pig herds of different Brazilian geographical regions and distinct pig categories were negative to anti-SVV antibodies in sera obtained before 2014. Antibodies to SVV were detected only in serum samples obtained after 2014, particularly in herds with the presence of pigs with SVV-clinical signs. These results present robust serological evidence that the SVV was not present in the major Brazilian pig producing regions prior to 2014.


Asunto(s)
Anticuerpos Antivirales/sangre , Infecciones por Picornaviridae/veterinaria , Enfermedades de los Porcinos/epidemiología , Animales , Brasil/epidemiología , Pruebas de Neutralización , Picornaviridae/genética , Picornaviridae/inmunología , Infecciones por Picornaviridae/epidemiología , Estudios Retrospectivos , Estudios Seroepidemiológicos , Porcinos , Enfermedades de los Porcinos/virología
15.
J Dairy Sci ; 100(9): 7051-7054, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28734599

RESUMEN

Bovine vaccinia is a neglected zoonosis caused by Vaccinia virus (VACV) and has a major economic and public health effect in Brazil. Previous studies showed infectious VACV particles in milk from either experimentally or naturally infected cows and in fresh cheeses prepared with experimentally contaminated milk. Ripening is a process that leads to major changes in the physical and chemical characteristics of cheese, reducing contamination by spoilage, pathogenic microorganisms, or both. However, it is not known if VACV infectious particles persist after the ripening process. To investigate this issue, viral infectivity at different ripening times was studied in cheeses manufactured with milk experimentally contaminated with VACV strain Guarani P2 (GP2). Cheeses were analyzed at 1, 7, 14, 21, 45, and 60 d of ripening at 25°C. Viral DNA was quantified by real-time PCR, and VACV isolation and titration were performed in Vero cells. The whole experiment was repeated 4 times. Analysis of the mean viral DNA quantification and infectivity indicated a reduction of approximately 2 logs along the ripening process; however, infectious viral particles (1.7 × 102 pfu/mL) could still be recovered at d 60 of ripening. These findings indicate that the ripening process reduces VACV infectivity, but it was not able to inactivate completely the viral particles after 60 d.


Asunto(s)
Queso/virología , Virus Vaccinia/fisiología , Fenómenos Fisiológicos de los Virus , Animales , Brasil , Bovinos , Chlorocebus aethiops , Femenino , Manipulación de Alimentos , Leche/virología , Factores de Tiempo , Vaccinia/virología , Células Vero
16.
Influenza Other Respir Viruses ; 9(3): 161-7, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25648743

RESUMEN

BACKGROUND: Swine influenza virus (SIV) is the cause of an acute respiratory disease that affects swine worldwide. In Brazil, SIV has been identified in pigs since 1978. After the emergence of pandemic H1N1 in 2009 (H1N1pdm09), few studies reported the presence of influenza virus in Brazilian herds. OBJECTIVES: The objective of this study was to evaluate the serological profile for influenza virus in farrow-to-finish pig farms in Minas Gerais state, Brazil. METHODS: Thirty farms with no SIV vaccination history were selected from the four larger pig production areas in Minas Gerais state (Zona da Mata, Triângulo Mineiro/Alto Paranaíba, South/Southwest and the Belo Horizonte metropolitan area). At each farm, blood samples were randomly collected from 20 animals in each production cycle category: breeding animals (sows and gilts), farrowing crate (2-3 weeks), nursery (4-7 weeks), grower pigs (8-14 weeks), and finishing pigs (15-16 weeks), with 100 samples per farm and a total of 3000 animals in this study. The samples were tested for hemagglutination inhibition activity against H1N1 pandemic strain (A/swine/Brazil/11/2009) and H3N2 SIV (A/swine/Iowa/8548-2/98) reference strain. RESULTS: The percentages of seropositive animals for H1N1pdm09 and H3N2 were 26.23% and 1.57%, respectively, and the percentages of seropositive herds for both viruses were 96.6% and 13.2%, respectively. CONCLUSIONS: The serological profiles differed for both viruses and among the studied areas, suggesting a high variety of virus circulation around the state, as well as the presence of seronegative animals susceptible to influenza infection and, consequently, new respiratory disease outbreaks.


Asunto(s)
Anticuerpos Antivirales/sangre , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Infecciones por Orthomyxoviridae/veterinaria , Enfermedades de los Porcinos/epidemiología , Agricultura , Animales , Brasil , Pruebas de Inhibición de Hemaglutinación , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/virología , Estudios Seroepidemiológicos , Porcinos , Enfermedades de los Porcinos/prevención & control , Enfermedades de los Porcinos/virología
17.
J Virol Methods ; 207: 226-31, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25066279

RESUMEN

Porcine circovirus type 2 (PCV2) is associated with postweaning multisystemic wasting syndrome (PMWS). The PCV2 capsid (Cap) protein is a leading antigen candidate for vaccine and serological diagnostic testing, due to its immunogenic properties. In this study, the codon-optimized PCV2 Cap gene was cloned into a pPICZαA vector for secretory expression in the methylotrophic yeast Pichia pastoris after methanol induction. The screening of recombinant yeasts was followed by detection of the recombinant Cap (rCap) protein by Western blot, using sera from pigs naturally infected with PCV2. The rCap secreted protein was used without prior purification as a coating antigen in the ELISA test, with high discrimination between PCV2-positive and negative sera. These results reveal a high confidence in the specific immunoreactivity of the secreted antigen and show the antigenicity of the recombinant protein. The feasibility of the P. pastoris expression system for the production of PCV2 Cap as secreted protein and its apparent bioactivity, suggests there are good prospects for the use of this antigen in the investigation of PCV2 infections and testing for vaccine purposes.


Asunto(s)
Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Circovirus/genética , Pichia/genética , Animales , Anticuerpos Antivirales/sangre , Antígenos Virales/genética , Western Blotting , Clonación Molecular , ADN Viral/química , ADN Viral/genética , Ensayo de Inmunoadsorción Enzimática , Expresión Génica , Vectores Genéticos , Datos de Secuencia Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomycetales , Análisis de Secuencia de ADN , Porcinos
18.
ACS Appl Mater Interfaces ; 6(14): 11403-12, 2014 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-24956063

RESUMEN

Despite undeniable advances in medicine in recent decades, cancer is still one of the main challenges faced by scientists and professionals in the health sciences as it remains one of the world's most devastating diseases with millions of fatalities and new cases every year. Thus, in this work, we endeavored to synthesize and characterize novel multifunctional immunoconjugates composed of quantum dots (QDs) as the fluorescent inorganic core and antibody-modified polysaccharide as the organic shell, focusing on their potential applications for in vitro diagnosis of non-Hodgkin lymphoma (NHL) cancer tumors. Chitosan was covalently conjugated with anti-CD20 polyclonal antibody (pAbCD20) via formation of amide bonds between amines and carboxyl groups. In the sequence, these biopolymer-antibody immunoconjugates were utilized as direct capping ligands for biofunctionalization of CdS QDs (CdS/chitosan-pAbCD20) using a single-step process in aqueous medium at room temperature. The nanostructures were characterized by UV-vis spectroscopy, photoluminescence spectroscopy (PL), FTIR, and transmission electron microscopy (TEM) with selected area electron diffraction. The TEM images associated with the UV-vis optical absorption results indicated formation of ultrasmall nanocrystals with average diameters in the range of 2.5-3.0 nm. Also, the PL results demonstrated that the immunoconjugates exhibited "green" fluorescent activity under ultraviolet excitation. Moreover, using in vitro laser light scattering immunoassay (LIA), the QDs/immunoconjugates have shown binding affinity against antigen CD20 (aCD20) expressed by lymphocyte-B cancer cells. In summary, innovative fluorescent nanoimmunoconjugate templates were developed with promising perspectives to be used in the future for detection and imaging of cancer tumors.


Asunto(s)
Anticuerpos Antineoplásicos , Antígenos CD20/metabolismo , Biomarcadores de Tumor/metabolismo , Quitosano , Linfoma de Células B , Imagen Óptica/métodos , Puntos Cuánticos/química , Anticuerpos Antineoplásicos/química , Anticuerpos Antineoplásicos/farmacología , Antígenos CD20/química , Linfocitos B/metabolismo , Linfocitos B/patología , Biomarcadores de Tumor/química , Línea Celular Tumoral , Quitosano/química , Quitosano/farmacología , Humanos , Linfoma de Células B/metabolismo , Linfoma de Células B/patología
19.
Influenza Other Respir Viruses ; 7(5): 783-90, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23280098

RESUMEN

BACKGROUND: Influenza A viruses circulating in pigs in Brazil are still not characterized, and only limited data are available about swine influenza epidemiology in the country. Therefore, we characterized the hemagglutinin (HA) and neuraminidase (NA) genes of influenza viruses isolated from Brazilian pigs. We also evaluated one case of probable swine-to-human transmission. METHODS: Twenty influenza viruses isolated from pigs during 2009-2010 in five Brazilian states (Minas Gerais, Sao Paulo, Parana, Rio Grande do Sul, and Mato Grosso) were used. One human isolate, from a technician who became ill after visiting a swineherd going through a respiratory disease outbreak, was also used in the study. Phylogenetic analysis for the HA and NA genes and hemagglutinin amino acid sequence alignment were performed. RESULTS: All isolates clustered with pandemic H1N1 2009 (pH1N1) viruses and appeared to have a common ancestor. Genetic diversity was higher in the HA than in the NA gene, and the amino acid substitution S203T in one of HA's antigenic sites was found in most of the samples. The human isolate was more related to swine isolates from the same herd visited by the technician than to other human isolates, suggesting swine-to-human transmission. CONCLUSION: Our results show that pH1N1 was disseminated and the predominant subtype in Brazilian pigs in 2009-2010.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Infecciones por Orthomyxoviridae/veterinaria , Enfermedades de los Porcinos/virología , Animales , Brasil/epidemiología , Variación Genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H1N1 del Virus de la Influenza A/clasificación , Virus de la Influenza A/genética , Virus de la Influenza A/aislamiento & purificación , Virus de la Influenza A/fisiología , Datos de Secuencia Molecular , Neuraminidasa/genética , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/virología , Filogenia , Porcinos , Enfermedades de los Porcinos/epidemiología
20.
Pesqui. vet. bras ; 33(1): 30-36, Jan. 2013. ilus, tab
Artículo en Inglés | VETINDEX | ID: vti-8101

RESUMEN

Influenza A virus (IAV) is a respiratory pathogen of pigs and is associated with the porcine respiratory disease complex (PRDC), along with other respiratory infectious agents. The aim of this study was to diagnose and to perform a clinic-pathological characterization of influenza virus infection in Brazilian pigs. Lung samples from 86 pigs in 37 farrow-to-finish and two farrow-to-feeder operations located in the States of Minas Gerais, São Paulo, Paraná, Rio Grande do Sul, Santa Catarina, and Mato Grosso were studied. Virus detection was performed by virus isolation and quantitative real time reverse-transcription PCR (qRT-PCR). Pathologic examination and immunohistochemistry (IHC) were performed in 60 lung formalin-fixed paraffin-embedded tissue fragments. Affected animals showed coughing, sneezing, nasal discharge, hyperthermia, inactivity, apathy, anorexia, weight loss and growth delay, which lasted for five to 10 days. Influenza virus was isolated from 31 (36.0%) lung samples and 36 (41.9%) were positive for qRT-PCR. Thirty-eight (63.3%) lung samples were positive by IHC and the most frequent microscopic lesion observed was inflammatory infiltrate in the alveoli, bronchiole, or bronchi wall or lumen (76.7%). These results indicate that influenza virus is circulating and causing disease in pigs in several Brazilian states.(AU)


O vírus influenza A (IAV) é um patógeno respiratório comum de suínos e faz parte do complexo de doenças respiratórias do suíno (PRDC) junto com outros agentes infecciosos. O objetivo deste estudo foi diagnosticar e realizar a caracterização clínica e patológica de casos/surtos de influenza em suínos brasileiros. Foram utilizadas amostras de tecido pulmonar de 86 suínos de 37 granjas de ciclo completo e duas unidades produtoras de leitões localizadas em Minas Gerais, São Paulo, Paraná, Rio Grande do Sul, Santa Catarina e Mato Grosso. A detecção viral em fragmentos pulmonares frescos foi realizada através do isolamento viral e da transcrição reversa-PCR em tempo real quantitativa (qRT-PCR). Exame patológico e imuno-histoquímica (IHQ) foram realizados em 60 amostras de pulmão fixadas em formalina 10% e embebidas em parafina. As amostras eram de animais apresentando tosse, espirros, secreção nasal, hipertermia, prostração, apatia, anorexia, perda de peso e ganho de peso reduzido, com duração entre cinco e 10 dias. O vírus influenza foi isolado de 31 (36,0%) amostras e 36 (41,9%) foram positivas na qRT-PCR. Na IHQ, 38 (63,3%) amostras foram positivas e a lesão mais frequentemente observada foi a presença de infiltrado inflamatório na parede e lúmen de vias aéreas (76,7%). Estes resultados indicam que o vírus influenza está circulando e causando lesões e doença respiratória em suínos de diversos Estados do Brasil.(AU)


Asunto(s)
Animales , Enfermedades de los Porcinos/patología , Alphainfluenzavirus/aislamiento & purificación , Pulmón/patología , Disección , Reacción en Cadena de la Polimerasa/veterinaria , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA