Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Eur J Clin Microbiol Infect Dis ; 34(10): 1947-55, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26173689

RESUMEN

Our goal was to identify the risk factors for co-colonization by KPC-producing Klebsiella pneumoniae (KPC-Kp), vancomycin-resistant enterococci (VRE), and methicillin-resistant Staphylococcus aureus (MRSA) upon intensive care unit (ICU) admission and during stay. Rectal and nasal samples were taken from each patient upon admission at two Greek ICUs and each week afterwards, and were inoculated onto chromogenic agar. Representative colonies were characterized with standard methods and Vitek-2 technology. The presence of the bla KPC gene (K. pneumoniae isolates), vanA and vanB (Enterococcus faecium and E. faecalis isolates), and mecA (S. aureus isolates) was confirmed by polymerase chain reaction (PCR). Upon ICU admission, among 481 patients, 59 (12%), 63 (13%), and 20 (4%) were colonized by KPC-Kp, VRE, or MRSA, respectively. Simultaneous colonization by KPC-Kp and VRE upon admission (34 patients) was associated with the number of co-morbidities [adjusted odds ratio (aOR): 1.5; confidence interval (CI) 1.0-2.5], administered antibiotics (aOR: 1.7; CI 1.3-2.3), and prior KPC-Kp infection (aOR: 24.4; CI 1.5-396.0). Among patients with an ICU stay of more than 6 days, 181 (73%), 31 (13%), and 9 (4%) became KPC-Kp, VRE, or MRSA colonized during ICU stay, respectively. KPC-Kp colonization was an independent risk factor for VRE colonization upon admission (aOR: 2.7; CI 1.0-7.2) and during stay (aOR: 7.4; CI 2.0-27.4), whereas VRE colonization was a risk factor for KPC-Kp upon admission (aOR: 5.1; CI 1.9-13.9) and MRSA colonization upon admission (aOR: 3.5; CI 1.2-10.1) and during ICU stay (aOR: 14.5; CI 2.1-100.1). Colonization by a multidrug pathogen could promote colonization by another.


Asunto(s)
Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Enterococcus/aislamiento & purificación , Infecciones por Klebsiella/tratamiento farmacológico , Klebsiella pneumoniae/aislamiento & purificación , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Resistencia a la Vancomicina/efectos de los fármacos , Adulto , Anciano , Infección Hospitalaria , Enterococcus/efectos de los fármacos , Femenino , Grecia , Humanos , Unidades de Cuidados Intensivos , Klebsiella pneumoniae/efectos de los fármacos , Masculino , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Persona de Mediana Edad , Estudios Prospectivos , Factores de Riesgo , Factores de Tiempo
2.
Int J Dent Hyg ; 11(4): 293-7, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23437905

RESUMEN

OBJECTIVES: The purpose of the study was to measure the effectiveness of oral health education and training among caregivers. METHODS: Controlled study design. Participants were randomized from the sample n = 30. n = 14 participants in the experimental group and n = 10 in the control group. The experimental group received a lecture and hands-on training in oral hygiene procedures. The control group received a facilitated group discussion. Both groups received a pre-post test. RESULTS: Considering the two groups independently, using a paired t-test, the experimental group, n = 14 had a score difference of 0.0607 (P-value = 0.01) and the control group n = 10, had a score difference of 0.035 (P-value = 0.14). CONCLUSION: This study found that knowledge was improved among caregivers following the implementation of formal oral hygiene training. Although the control group also showed some improvements with the facilitated discussion, the results are not significant to say that both the formal training and the facilitated discussion are equally important in training caregivers effectively.


Asunto(s)
Cuidadores/educación , Personas con Discapacidad , Higiene Bucal/educación , Placa Dental/terapia , Progresión de la Enfermedad , Escolaridad , Femenino , Educación en Salud Dental/métodos , Conocimientos, Actitudes y Práctica en Salud , Humanos , Relaciones Interpersonales , Masculino , Enfermedades Periodontales/fisiopatología , Enseñanza/métodos , Cepillado Dental/métodos
3.
Waste Manag ; 33(2): 363-72, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23206519

RESUMEN

The primary goal of managing MSW incineration residues is to avoid any impact on human health or the environment. Incineration residues consist of bottom ash, which is generally considered as rather harmless and fly ash which usually contains compounds which are potentially harmful for public health. Small quantities of ash (both bottom and fly) are produced currently in Greece, mainly from the healthcare waste incineration facility in Attica region. Once incineration plants for MSW (currently under planning) are constructed in Greece, the produced ash quantities will increase highly. Thus, it is necessary to organize, already at this stage, a roadmap towards disposal/recovery methods of these ash quantities expected. Certain methods, related to the treatment of the future generated ash which are more appropriate to be implemented in Greece are highlighted in the present paper. The performed analysis offers a waste management approach, having 2016 as a reference year for two different incineration rates; 30% and 100% of the remaining MSW after recycling process. The results focus on the two greater regions of Greece: Attica and Central Macedonia. The quantity of potential future ash generation ranges from 137 to 459 kt for Attica region and from 62 to 207 kt for central Macedonia region depending on the incineration rate applied. Three alternative scenarios for the treatment of each kind of ash are compiled and analysed. Metal recovery and reuse as an aggregate in concrete construction proved to be the most advantageous -in terms of economy-bottom ash management scenario. Concerning management of the fly ash, chemical treatment with phosphoric solution addition results to be the lowest total treatment cost and is considered as the most profitable solution. The proposed methodology constitutes a safe calculation model for operators of MSW incineration plants regardless of the region or country they are located in.


Asunto(s)
Eliminación de Residuos/métodos , Residuos Sólidos/análisis , Administración de Residuos/métodos , Ceniza del Carbón/análisis , Ceniza del Carbón/química , Materiales de Construcción/análisis , Grecia , Incineración , Modelos Teóricos , Reciclaje , Eliminación de Residuos/economía , Residuos Sólidos/clasificación
4.
J Mol Neurosci ; 16(1): 21-32, 2001 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11345517

RESUMEN

A G protein-gated inward rectifier potassium (K+) channel (GIRK1a) has been cloned from different tissues (Kubo et al., 1993b; Dascal et al., 1993). Here we report the cloning of three additional novel isoforms of GIRK1a from rat atria and and one from human brain. These isoform cDNAs code for proteins that have identical N-termini, M1-H5-M2 (predicted transmembrane and pore domains), and post-M2 amino acid regions to GIRK1a (1-501 amino acids), but they have shorter C-termini (GIRK1b (1-309), GIRK1c (1-308), GIRK1d (1-235), and GIRK1e (1-253). These results indicated that isoforms were generated by alternative splicing and partial genomic analysis confirmed the presence of exons and introns in the rat GIRK1 gene. RNase protection analysis and immunoblot analysis indicated that the isoforms were expressed in both rat atria and brain but at lower levels versus GIRK1a. The physiological role that the isoforms may play in atrial and brain physiology remains to be determined.


Asunto(s)
Apéndice Atrial/metabolismo , Encéfalo/metabolismo , Proteínas de Unión al GTP/metabolismo , Canales de Potasio de Rectificación Interna , Canales de Potasio/química , Isoformas de Proteínas/química , Empalme Alternativo/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Membrana Celular/metabolismo , Clonación Molecular , Exones/genética , Canales de Potasio Rectificados Internamente Asociados a la Proteína G , Regulación de la Expresión Génica/genética , Biblioteca Genómica , Immunoblotting , Datos de Secuencia Molecular , Oocitos/metabolismo , Canales de Potasio/genética , Isoformas de Proteínas/genética , ARN Mensajero/metabolismo , Ribonucleasas/análisis , Xenopus/metabolismo
5.
Circ Res ; 88(9): 940-6, 2001 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-11349004

RESUMEN

The K(+) channel mKv1.5 is thought to encode a 4-aminopyridine (4-AP)-sensitive component of the current I(K,slow) in the mouse heart. We used gene targeting to replace mKv1.5 with the 4-AP-insensitive channel rKv1.1 (SWAP mice) and directly test the role of Kv1.5 in the mouse ventricle. Kv1.5 RNA and protein were undetectable, rKv1.1 was expressed, and Kv2.1 protein was upregulated in homozygous SWAP hearts. The density of the K(+) current I(K,slow) (depolarizations to +40 mV, pA/pF) was similar in left ventricular myocytes isolated from SWAP homozygotes (17+/-1, n=27) and littermate controls (16+/-2, n=19). The densities and properties of I(peak), I(to,f), I(to,s), and I(ss) were also unchanged. In homozygous SWAP myocytes, the 50-micromol/L 4-AP-sensitive component of IK,slowwas absent (n=6), the density of the 20-mmol/L tetraethylammonium-sensitive component of I(K,slow) was increased (9+/-1 versus 5+/-1, P<0.05), and no 100- to 200-nmol/L alpha-dendrotoxin-sensitive current was found (n=8). APD(90) in SWAP myocytes was similar to controls at baseline but did not prolong in response to 30 micromol/L 4-AP. Similarly, QTc (ms) was not prolonged in anesthetized SWAP mice (64+/-2, homozygotes, n=9; 62+/-2, controls, n=9), and injection with 4-AP prolonged QTc only in controls (63+/-1, homozygotes; 72+/-2, controls; P<0.05). SWAP mice had no increase in arrhythmias during ambulatory telemetry monitoring. Thus, Kv1.5 encodes the 4-AP-sensitive component of I(K,slow) in the mouse ventricle and confers sensitivity to 4-AP-induced prolongation of APD and QTC: Compensatory upregulation of Kv2.1 may explain the phenotypic differences between SWAP mice and the previously described transgenic mice expressing a truncated dominant-negative Kv1.1 construct.


Asunto(s)
4-Aminopiridina/farmacología , Potenciales de la Membrana/efectos de los fármacos , Canales de Potasio con Entrada de Voltaje , Canales de Potasio/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Línea Celular , Células Cultivadas , Electrocardiografía , Femenino , Expresión Génica , Marcación de Gen , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/efectos de los fármacos , Canal de Potasio Kv1.5 , Masculino , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Canales de Potasio/efectos de los fármacos , Canales de Potasio/genética , Ratas , Función Ventricular
6.
J Biol Chem ; 276(6): 4227-35, 2001 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-11076942

RESUMEN

To investigate how G protein alpha subunit localization is regulated under basal and activated conditions, we inserted green fluorescent protein (GFP) into an internal loop of Galpha(q). alpha(q)-GFP stimulates phospholipase C in response to activated receptors and inhibits betagamma-dependent activation of basal G protein-gated inwardly rectifying K(+) currents as effectively as alpha(q) does. Association of alpha(q)-GFP with the plasma membrane is reduced by mutational activation and eliminated by mutation of the alpha(q) palmitoylation sites, suggesting that alpha(q) must be in the inactive, palmitoylated state to be targeted to this location. We tested the effects of activation by receptors and by AlF(4)(-) on the localization of alpha(q)-GFP in cells expressing both alpha(q)-GFP and a protein kinase Cgamma-red fluorescent protein fusion that translocates to the plasma membrane in response to activation of G(q). In cells that clearly exhibit protein kinase Cgamma-red fluorescent protein translocation responses, relocalization of alpha(q)-GFP is not observed. Thus, under conditions associated with palmitate turnover and betagamma dissociation, alpha(q)-GFP remains associated with the plasma membrane. These results suggest that upon reaching the plasma membrane alpha(q) receives an anchoring signal in addition to palmitoylation and association with betagamma, or that during activation, one or both of these factors continues to retain alpha(q) in this location.


Asunto(s)
Compuestos de Aluminio/metabolismo , Fluoruros/metabolismo , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Proteínas Luminiscentes/metabolismo , Ácido Palmítico/metabolismo , Membrana Celular , Subunidades alfa de la Proteína de Unión al GTP Gq-G11 , Proteínas Fluorescentes Verdes , Proteínas de Unión al GTP Heterotriméricas/química , Inmunohistoquímica , Proteínas Luminiscentes/química , Microscopía Confocal , Modelos Moleculares , Mutagénesis , Conformación Proteica
7.
Nat Cell Biol ; 2(8): 507-14, 2000 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-10934471

RESUMEN

Phosphatidylinositol bisphosphate (PIP2) directly regulates functions as diverse as the organization of the cytoskeleton, vesicular transport and ion channel activity. It is not known, however, whether dynamic changes in PIP2 levels have a regulatory role of physiological importance in such functions. Here, we show in both native cardiac cells and heterologous expression systems that receptor-regulated PIP2 hydrolysis results in desensitization of a GTP-binding protein-stimulated potassium current. Two receptor-regulated pathways in the plasma membrane cross-talk at the level of these channels to modulate potassium currents. One pathway signals through the betagamma subunits of G proteins, which bind directly to the channel. Gbetagamma subunits stabilize interactions with PIP2 and lead to persistent channel activation. The second pathway activates phospholipase C (PLC) which hydrolyses PIP2 and limits Gbetagamma-stimulated activity. Our results provide evidence that PIP2 itself is a receptor-regulated second messenger, downregulation of which accounts for a new form of desensitization.


Asunto(s)
Membrana Celular/metabolismo , Activación del Canal Iónico , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canales de Potasio de Rectificación Interna , Potasio/metabolismo , Receptores de Superficie Celular/metabolismo , Sistemas de Mensajero Secundario , Acetilcolina/farmacología , Animales , Animales Recién Nacidos , Células COS , Membrana Celular/efectos de los fármacos , Membrana Celular/enzimología , Células Cultivadas , Conductividad Eléctrica , Activación Enzimática/efectos de los fármacos , Receptores ErbB/química , Receptores ErbB/metabolismo , Estrenos/farmacología , Canales de Potasio Rectificados Internamente Asociados a la Proteína G , Atrios Cardíacos/citología , Atrios Cardíacos/efectos de los fármacos , Atrios Cardíacos/enzimología , Atrios Cardíacos/metabolismo , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Hidrólisis/efectos de los fármacos , Activación del Canal Iónico/efectos de los fármacos , Oocitos/metabolismo , Bloqueadores de los Canales de Potasio , Canales de Potasio/metabolismo , Pirrolidinonas/farmacología , Ratas , Receptor Cross-Talk/efectos de los fármacos , Receptor Muscarínico M1 , Receptor Muscarínico M2 , Receptores de Superficie Celular/agonistas , Receptores de Superficie Celular/química , Receptores Muscarínicos/química , Receptores Muscarínicos/metabolismo , Sistemas de Mensajero Secundario/efectos de los fármacos , Fosfolipasas de Tipo C/antagonistas & inhibidores , Fosfolipasas de Tipo C/metabolismo , Xenopus laevis
8.
J Biol Chem ; 275(39): 30677-82, 2000 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-10889209

RESUMEN

GIRK (G protein-gated inward rectifier K(+) channel) proteins play critical functional roles in heart and brain physiology. Using antibodies directed to either GIRK1 or GIRK4, site-directed mutagenesis, and specific glycosidases, we have investigated the effects of glycosylation in the biosynthesis and heteromerization of these proteins expressed in oocytes. Both GIRK1 and GIRK4 have one extracellular consensus N-glycosylation site. Using chimeras between GIRK1 and GIRK4 as well as a GIRK1 N-glycosylation mutant, we report that GIRK1 was glycosylated at Asn(119), whereas GIRK4 was not glycosylated at Asn(132). GIRK1 membrane-spanning domain 1 was required for optimal glycosylation at Asn(119) because a chimera that contained GIRK4 membrane-spanning domain 1 significantly reduced the addition of a carbohydrate structure at this site. This finding may partly account for the reason that GIRK4 is not glycosylated at Asn(132), either as a homomer or when coexpressed with GIRK1. When the GIRK1(N119Q) mutant was coexpressed with GIRK4, the biophysical properties of the heteromeric channel and the magnitude of the agonist-induced currents were similar to those of controls. Thus, N-glycosylation of GIRK1 at Asn(119) does not appear to affect its physical association with GIRK4, the routing of the heteromer to the cell surface, or heteromeric channel function, unlike the dramatic functional effects of N-glycosylation of ROMK1 at Asn(117) (Schwalbe, R. A., Wang, Z., Wible, B. A., and Brown, A. M. (1995) J. Biol. Chem. 270, 15336-15340).


Asunto(s)
Asparagina/metabolismo , Glicoproteínas/metabolismo , Canales de Potasio de Rectificación Interna , Canales de Potasio/metabolismo , Amidohidrolasas/metabolismo , Clonación Molecular , Canales de Potasio Rectificados Internamente Asociados a la Proteína G , Glicoproteínas/genética , Glicosilación , Hexosaminidasas/metabolismo , Humanos , Mutación , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa , Canales de Potasio/genética , Conformación Proteica , ARN Complementario , Receptor Muscarínico M2 , Receptores Muscarínicos , Proteínas Recombinantes/metabolismo
9.
J Biol Chem ; 274(51): 36065-72, 1999 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-10593888

RESUMEN

Activation of several inwardly rectifying K(+) channels (Kir) requires the presence of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)). The constitutively active Kir2.1 (IRK1) channels interact with PtdIns(4,5)P(2) strongly, whereas the G-protein activated Kir3.1/3.4 channels (GIRK1/GIRK4), show only weak interactions with PtdIns(4,5)P(2). We investigated whether these inwardly rectifying K(+) channels displayed distinct specificities for different phosphoinositides. IRK1, but not GIRK1/GIRK4 channels, showed a marked specificity toward phosphates in the 4,5 head group positions. GIRK1/GIRK4 channels were activated with a similar efficacy by PtdIns(3,4)P(2), PtdIns(3,5)P(2), PtdIns(4,5)P(2), and PtdIns(3,4,5)P(3). In contrast, IRK1 channels were not activated by PtdIns(3,4)P(2) and only marginally by high concentrations of PtdIns(3,5)P(2). Similarly, high concentrations of PtdIns(3,4,5)P(3) were required to activate IRK1 channels. For either channel, PtdIns(4)P was much less effective than PtdIns(4,5)P(2), whereas PtdIns was inactive. In contrast to the dependence on the position of phosphates of the phospholipid head group, GIRK1/GIRK4, but not IRK1 channel activation, showed a remarkable dependence on the phospholipid acyl chains. GIRK1/GIRK4 channels were activated most effectively by the natural arachidonyl stearyl PtdIns(4,5)P(2) and much less by the synthetic dipalmitoyl analog, whereas IRK1 channels were activated equally by dipalmitoyl and arachidonyl stearyl PtdIns(4,5)P(2). Incorporation of PtdInsP(2) into the membrane is necessary for activation, as the short chain water soluble diC(4) PtdIns(4,5)P(2) did not activate either channel, whereas activation by diC(8) PtdIns(4, 5)P(2) required high concentrations.


Asunto(s)
Fosfatidilinositol 4,5-Difosfato/metabolismo , Canales de Potasio de Rectificación Interna , Canales de Potasio/metabolismo , Animales , Electrofisiología , Canales de Potasio Rectificados Internamente Asociados a la Proteína G , Transducción de Señal , Xenopus
10.
J Physiol ; 520 Pt 3: 630, 1999 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-10545130

RESUMEN

Several inwardly rectifying K+ channels show an ATP-dependent rundown of their activity. Hydrolysis of ATP is required for maintenance of channel activity. G protein-gated inwardly rectifying K+ (GIRK) channels also depend on ATP hydrolysis for gating by sodium ions or the [beta][gamma] subunits of G proteins (Sui et al. 1998). Strong evidence suggests that phosphatidylinositol 4, 5-bisphosphate (PIP2), synthesized via the hydrolysis of ATP, is absolutely required for channel gating (Sui et al. 1998; Huang et al. 1998). Interestingly, Huang and colleagues (Huang et al. 1998) showed that G[beta][gamma] subunits (the [beta][gamma] subunits of GTP-binding proteins) caused a stabilization of channel-PIP2 interactions, suggesting that G[beta][gamma] subunits may gate the channel through PIP2. Ho & Murrell-Lagnado (1999b) recently identified an aspartate residue responsible for gating these K+ channels. Ho & Murrell-Lagnado (1999a) in this issue of The Journal of Physiology present evidence that sodium ions also stabilize channel-PIP2 interactions. They suggest that Na+ effectively neutralizes a negatively charged residue, somehow promoting interactions of the channel with PIP2. These results on the mechanism of Na+ action are in close agreement with recently published work from our group. Zhang et al. (1999) showed that two C-terminal cytoplasmic arginine residues, which interact with PIP2, are localized next to the identified aspartate residue that is responsible for the Na+ effects on gating. Thus, the implication from the results of these three studies (Huang et al. 1998; Zhang et al. 1999; Ho & Murrell-Lagnado, 1999a) is that stabilization of channel-PIP2 interactions may be a common mechanism for gating GIRK channels by molecules as different as Na+ or the G[beta][gamma] subunits (see Fig. 1). These results raise many interesting questions on how modulation of channel-PIP2 interactions may lead to channel gating. Are the channel-PIP2 sites that are stabilized by G[beta][gamma] subunits shared with those that are affected by Na+? Na+ seems to act by screening the electrostatic effects that the aspartate residue exerts on the nearby PIP2-interacting arginines. How does G[beta][gamma] binding lead to stabilization of channel- PIP2 interactions? Is the Na+ sensitivity of the channel used physiologically and if so how does it relate to signalling through G proteins? Structural data for these channels and in particular for their cytoplasmic portions, which are critical for interactions with PIP2, will greatly aid our molecular understanding of the conformations needed for channel gating. Finally, although the dependence of GIRK channel activity on PIP2 is clear, it is not known yet whether the levels of PIP2 needed for channel gating are constant or under regulatory control. Answers to these and many other such questions are likely to shed light on the mechanism by which PIP2 itself serves as an important regulator of the activity of membrane proteins.


Asunto(s)
Activación del Canal Iónico/fisiología , Fosfatidilinositol 4,5-Difosfato/fisiología , Canales de Potasio de Rectificación Interna , Canales de Potasio/metabolismo
11.
Nat Cell Biol ; 1(3): 183-8, 1999 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-10559906

RESUMEN

Direct interactions of phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) with inwardly rectifying potassium channels are stronger with channels rendered constitutively active by binding to PtdIns(4,5)P2, such as IRK1, than with G-protein-gated channels (GIRKs). As a result, PtdIns(4,5)P2 alone can activate IRK1 but not GIRKs, which require extra gating molecules such as the beta gamma subunits of G proteins or sodium ions. Here we identify two conserved residues near the inner-membrane interface of these channels that are critical in interactions with PtdIns(4,5)P2. Between these two arginines, a conservative change of isoleucine residue 229 in GIRK4 to the corresponding leucine found in IRK1 strengthens GIRK4-PtdIns(4,5)P2 interactions, eliminating the need for extra gating molecules. A negatively charged GIRK4 residue, two positions away from the most strongly interacting arginine, mediates stimulation of channel activity by sodium by strengthening channel-PtdIns(4,5)P2 interactions. Our results provide a mechanistic framework for understanding how distinct gating mechanisms of inwardly rectifying potassium channels allow these channels to subserve their physiological roles.


Asunto(s)
Fosfatidilinositol 4,5-Difosfato/farmacología , Canales de Potasio de Rectificación Interna , Canales de Potasio/fisiología , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Secuencia Conservada , Femenino , Canales de Potasio Rectificados Internamente Asociados a la Proteína G , Humanos , Cinética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Oocitos/efectos de los fármacos , Oocitos/fisiología , Técnicas de Placa-Clamp , Mutación Puntual , Canales de Potasio/química , Canales de Potasio/efectos de los fármacos , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/efectos de los fármacos , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Xenopus
12.
J Gen Physiol ; 114(5): 673-84, 1999 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-10532964

RESUMEN

Native and recombinant G protein-gated inwardly rectifying potassium (GIRK) channels are directly activated by the betagamma subunits of GTP-binding (G) proteins. The presence of phosphatidylinositol-bis-phosphate (PIP(2)) is required for G protein activation. Formation (via hydrolysis of ATP) of endogenous PIP(2) or application of exogenous PIP(2) increases the mean open time of GIRK channels and sensitizes them to gating by internal Na(+) ions. In the present study, we show that the activity of ATP- or PIP(2)-modified channels could also be stimulated by intracellular Mg(2+) ions. In addition, Mg(2+) ions reduced the single-channel conductance of GIRK channels, independently of their gating ability. Both Na(+) and Mg(2+) ions exert their gating effects independently of each other or of the activation by the G(betagamma) subunits. At high levels of PIP(2), synergistic interactions among Na(+), Mg(2+), and G(betagamma) subunits resulted in severalfold stimulated levels of channel activity. Changes in ionic concentrations and/or G protein subunits in the local environment of these K(+) channels could provide a rapid amplification mechanism for generation of graded activity, thereby adjusting the level of excitability of the cells.


Asunto(s)
Subunidades beta de la Proteína de Unión al GTP , Subunidades gamma de la Proteína de Unión al GTP , Proteínas de Unión al GTP/farmacología , Proteínas de Unión al GTP Heterotriméricas , Activación del Canal Iónico/efectos de los fármacos , Magnesio/farmacología , Canales de Potasio de Rectificación Interna , Canales de Potasio/fisiología , Sodio/farmacología , Adenosina Trifosfato/farmacología , Animales , Sitios de Unión/fisiología , Embrión de Pollo , Sinergismo Farmacológico , Conductividad Eléctrica , Canales de Potasio Rectificados Internamente Asociados a la Proteína G , Guanosina 5'-O-(3-Tiotrifosfato)/farmacología , Atrios Cardíacos/química , Atrios Cardíacos/citología , Activación del Canal Iónico/fisiología , Potenciales de la Membrana/fisiología , Miocardio/química , Miocardio/citología , Oocitos/fisiología , Técnicas de Placa-Clamp , Fosfatidilinositol 4,5-Difosfato/farmacología , Canales de Potasio/química , Xenopus
13.
J Biol Chem ; 274(18): 12517-24, 1999 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-10212228

RESUMEN

Activation of heterotrimeric GTP-binding (G) proteins by their coupled receptors, causes dissociation of the G protein alpha and betagamma subunits. Gbetagamma subunits interact directly with G protein-gated inwardly rectifying K+ (GIRK) channels to stimulate their activity. In addition, free Gbetagamma subunits, resulting from agonist-independent dissociation of G protein subunits, can account for a major component of the basal channel activity. Using a series of chimeric constructs between GIRK4 and a Gbetagamma-insensitive K+ channel, IRK1, we have identified a critical site of interaction of GIRK with Gbetagamma. Mutation of Leu339 to Glu within this site impaired agonist-induced sensitivity and decreased binding to Gbetagamma, without removing the Gbetagamma contribution to basal currents. Mutation of the corresponding residue in GIRK1 (Leu333) resulted in a similar phenotype. Both the GIRK1 and GIRK4 subunits contributed equally to the agonist-induced sensitivity of the heteromultimeric channel. Thus, we have identified a channel site that interacts specifically with Gbetagamma subunits released through receptor stimulation.


Asunto(s)
Canales de Potasio de Rectificación Interna , Canales de Potasio/metabolismo , Transducción de Señal , Sitios de Unión , Biopolímeros , Canales de Potasio Rectificados Internamente Asociados a la Proteína G , Humanos , Leucina/química , Leucina/genética , Leucina/metabolismo , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Canales de Potasio/química , Canales de Potasio/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
15.
J Physiol ; 509 ( Pt 2): 355-70, 1998 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-9575286

RESUMEN

1. The whole-cell perforated-patch recording mode was used to record a Ca2+-dependent K+ current (IK(Ca)) in mouse betaTC-3 insulin-secreting cells. 2. Depolarizing voltage steps (to potentials where Ca2+ currents are activated) evoked a slowly activating, outward current, which exhibited a slow deactivation (in seconds) upon subsequent hyperpolarization. 3. This current was shown to increase with progressively longer depolarizing voltage steps. It could be reversibly abolished by the removal of Ca2+ from the external medium or by application of Ca2+ channel blockers, such as Cd2+ and nifedipine. It was concluded that the depolarization-evoked current was activated by Ca2+. 4. Variations in external K+ concentration led to shifts in the reversal potential of the Ca2+-dependent current as predicted by the Nernst equation for a K+-selective current. 5. The Ca2+-activated K+ current was insensitive to external TEA (10 mM), a concentration sufficient to block the large-conductance Ca2+-dependent (maxi-KCa) channel in beta-cells. It was also insensitive to apamin, tubocurarine and scyllatoxin (leiurotoxin I), specific blockers of small-conductance KCa channels. 6. The current was blocked by quinine, a non-specific KCa channel blocker and, surprisingly, by charybdotoxin (ChTX; 100 nM) but not iberiotoxin, a charybdotoxin analogue, which blocks the maxi-KCa channel. It was sensitive to block by clotrimazole and could be potently and reversibly potentiated by micromolar concentrations of niflumic acid. Thus, the current exhibited unique pharmacological characteristics, not conforming to the known KCa channel classes. 7. The ChTX-sensitive KCa channel was permeable to Tl+, K+, Rb+ and NH4+ but not Cs+ ions. 8. The ChTX-sensitive IK(Ca) could be activated by the muscarinic agonists in the presence or absence of external Ca2+, presumably by releasing Ca2+ from internal stores. 9. Acutely isolated porcine islet cells also exhibited a slow IK(Ca) resembling that described in betaTC-3 cells in kinetic properties, insensitivity to TEA (5 mM) and sensitivity to quinidine, an analogue of quinine. The porcine IK(Ca), however, was not sensitive to block by 100-200 nM ChTX. It is likely, that species differences account for pharmacological differences between the mouse and porcine slow IK(Ca).


Asunto(s)
Calcio/farmacología , Insulina/metabolismo , Islotes Pancreáticos/fisiología , Canales de Potasio/fisiología , Animales , Bario/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Línea Celular , Células Cultivadas , Secreción de Insulina , Islotes Pancreáticos/citología , Islotes Pancreáticos/efectos de los fármacos , Cinética , Potenciales de la Membrana/efectos de los fármacos , Ratones , Técnicas de Placa-Clamp , Potasio/farmacología , Canales de Potasio/efectos de los fármacos , Estroncio/farmacología , Porcinos , Tetraetilamonio/farmacología
16.
Proc Natl Acad Sci U S A ; 95(3): 1307-12, 1998 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-9448327

RESUMEN

The betagamma subunits of GTP-binding proteins (Gbetagamma) activate the muscarinic K+ channel (KACh) in heart by direct binding to both of its component subunits. KACh channels can also be gated by internal Na+ ions. Both activation mechanisms show dependence on hydrolysis of intracellular ATP. We report that phosphatidylinositol 4,5-bisphosphate (PIP2) mimics the ATP effects and that depletion or block of PIP2 retards the stimulatory effects of Gbetagamma subunits or Na+ ions on channel activity, effects that can be reversed by restoring PIP2. Thus, regulation of KACh channel activity may be crucially dependent on PIP2 and phosphatidylinositol signaling. These striking functional results are in agreement with in vitro biochemical studies on the PIP2 requirement for Gbetagamma stimulation of G protein receptor kinase activity, thus implicating phosphatidylinositol phospholipids as a potential control point for Gbetagamma-mediated signal transduction.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canales de Potasio de Rectificación Interna , Canales de Potasio/metabolismo , Receptores Muscarínicos/metabolismo , Sodio/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Membrana Celular/metabolismo , Pollos , Canales de Potasio Rectificados Internamente Asociados a la Proteína G , Guanosina Trifosfato/metabolismo , Activación del Canal Iónico , Miocardio/metabolismo , Transducción de Señal , Canales de Sodio/metabolismo , Xenopus
17.
Pflugers Arch ; 433(6): 679-90, 1997 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-9049157

RESUMEN

Ca(2+)-dependent conductances have been hypothesized to play a role in the bursting pattern of electrical activity of insulin-secreting beta cells in response to high plasma glucose. A Maxi K+ channel has received the most attention, while a low-conductance Ca(2+)-activated K+ current has also been identified. We used an increasingly popular beta cell model system, the beta TC-3 cell line, and the perforated-patch technique to describe the properties of a novel Ca(2+)-dependent Cl- current [ICl(Ca)] in insulin-secreting pancreatic beta cells. The reported ICl(Ca) could be activated under physiological Ca2+ concentrations and is the first of its kind to be described in pancreatic insulin-secreting cells. We found that long depolarizing steps above -20 mV elicited an outward current which showed slow inward relaxation upon repolarization to negative membrane potentials. Both the outward currents and the inward tails showed dependence on Ca2+ influx: their current/voltage (I/V) relations followed that of the "L-like" Ca2+ current (ICa) present in these cells; they were blocked completely by the removal of external Ca2+ or application of Cd2+ at concentrations sufficient for complete block of ICa; and their magnitude increased with the depolarizing step duration. Moreover, the inward tail decayed monoexponentially with a time constant which at voltages negative to activation of ICa showed a weak linear voltage dependence, while at voltages positive to activation of ICa it followed the voltage dependence of ICa. This Ca(2+)-dependent current reversed at -21.5 mV and when the external Cl- concentration was reduced from 159 mM to 62 mM the reversal potential shifted by approximately +20 mV as predicted by the Nernst relation for a Cl(-)-selective current. Cl- channel blockers such as DIDS (100 microM) and niflumic acid (100 microM) blocked this current. We concluded that this current was a Ca(2+)-dependent Cl- current [ICl(Ca)]. From substitution of the external Cl- with various monovalent anions and from the reversal potentials we obtained the following permeability sequence for ICl(Ca): I- > NO3- > Br- > Cl- > Acetate.


Asunto(s)
Calcio/fisiología , Canales de Cloruro/metabolismo , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Animales , Antibacterianos/farmacología , Bario/farmacología , Calcio/metabolismo , Células Cultivadas , Electrofisiología , Gramicidina/farmacología , Secreción de Insulina , Cinética , Potenciales de la Membrana/fisiología , Ratones , Técnicas de Placa-Clamp
18.
J Biol Chem ; 272(10): 6548-55, 1997 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-9045681

RESUMEN

Heterologous coexpression of recombinant, G protein-gated, inwardly rectifying K+ (GIRK) channel subunits has yielded large currents, severalfold greater than those obtained from expression of the individual subunits. Such current enhancement has been obtained from coexpression of the inactive GIRK1 subunit with the low activity GIRK2-5 subunits in Xenopus oocytes. Using deletion and chimeric constructs, we now report the identification of a C-terminal region unique to GIRK1 and a larger central region of GIRK4 highly homologous to GIRK1, both of which are critical for production of large currents. Chimeras containing these two regions produced homomeric channels, exhibiting currents severalfold greater than those from either wild-type subunit alone. G protein regulation of such chimeric channel currents resembled that of wild-type currents. Green fluorescent protein-tagged channels showed that the amount of chimeric channel expressed on the oocyte cell surface was similar to its wild-type counterpart, suggesting that the enhanced activity was not due to differences in relative levels of expression but rather to the coexistence of the chimeric regions. Single-channel recordings of the active chimeras exhibited patterns of activities with open-time kinetics and conductance characteristics representative of those of GIRK4, indicating that the presence of the GIRK1 C-terminal region caused an increase in the frequency of channel openings without affecting their duration.


Asunto(s)
Proteínas de Unión al GTP/fisiología , Activación del Canal Iónico , Canales de Potasio de Rectificación Interna , Canales de Potasio/fisiología , Secuencia de Aminoácidos , Animales , Bario/química , Conductividad Eléctrica , Canales de Potasio Rectificados Internamente Asociados a la Proteína G , Humanos , Sustancias Macromoleculares , Oocitos , Canales de Potasio/química , Proteínas Recombinantes de Fusión , Alineación de Secuencia , Eliminación de Secuencia , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad , Xenopus laevis
19.
J Biol Chem ; 272(50): 31553-60, 1997 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-9395492

RESUMEN

In heart, G-protein-activated channels are complexes of two homologous proteins, GIRK1 and GIRK4. Expression of either protein alone results in barely active or non-active channels, making it difficult to assess the individual contribution of each subunit to the channel complex. The residue Phe137, located within the H5 region of GIRK1, is critical to the synergy between GIRK1 and GIRK4 (Chan, K. W., Sui, J. L., Vivaudou, M., and Logothetis, D. E. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 14193-14198). By modifying this residue or the matching residue of GIRK4, Ser143, we have been able to generate mutant proteins that produced large inwardly rectifying, G-protein-modulated currents when expressed alone in Xenopus oocytes. The enhanced activity of the heterologous expression of each of two active mutants, GIRK1(F137S) and GIRK4(S143T), was not caused by association with an endogenous oocyte channel subunit, and these mutants did not display apparent differences in the ability to localize to the cell surface compared with their wild-type counterparts. When these functional mutant channels were compared individually with wild-type heteromeric channels, they responded with only small differences to a number of maneuvers involving coexpression with muscarinic receptors, G-protein betagamma subunits, wild-type or mutated G-protein alpha subunits, and active protomers of pertussis toxin. These experiments, which confirmed the crucial, though not exclusive, role of Gbetagamma in regulating channel activity, demonstrated that GIRK1(F137S) and GIRK4(S143T), and by extrapolation their wild-type counterparts, interact in a qualitatively similar way with G-protein subunits. These findings suggest that functionally important sites of interaction with G-proteins are likely to be located within the homologous regions of GIRK1 and GIRK4 rather than within the divergent terminal regions. They also raise the question of the functional advantage of a heteromeric over homomeric design for G-protein-gated channels.


Asunto(s)
Proteínas de Unión al GTP/fisiología , Canales de Potasio de Rectificación Interna , Canales de Potasio/metabolismo , Animales , Canales de Potasio Rectificados Internamente Asociados a la Proteína G , Activación del Canal Iónico/efectos de los fármacos , Mutagénesis Sitio-Dirigida , Oocitos/metabolismo , Toxina del Pertussis , Mutación Puntual , Canales de Potasio/genética , Conformación Proteica , Factores de Virulencia de Bordetella/farmacología , Xenopus
20.
J Gen Physiol ; 108(5): 381-91, 1996 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-8923264

RESUMEN

Muscarinic potassium channels (KACh) are composed of two subunits, GIRK1 and GIRK4 (or CIR), and are directly gated by G proteins. We have identified a novel gating mechanism of KACh, independent of G-protein activation. This mechanism involved functional modification of KACh which required hydrolysis of physiological levels of intracellular ATP and was manifested by an increase in the channel mean open time. The ATP-modified channels could in turn be gated by intracellular Na+, starting at approximately 3 mM with an EC50 of approximately 40 mM. The Na(+)-gating of KACh was operative both in native atrial cells and in a heterologous system expressing recombinant channel subunits. Block of the Na+/K+ pump (e.g., by cardiac glycosides) caused significant activation of KACh in atrial cells, with a time course similar to that of Na+ accumulation and in a manner indistinguishable from that of Na(+)-mediated activation of the channel, suggesting that cardiac glycosides activated KACh by increasing intracellular Na+ levels. These results demonstrate for the first time a direct effect of cardiac glycosides on atrial myocytes involving ion channels which are critical in the regulation of cardiac rhythm.


Asunto(s)
Proteínas de Unión al GTP/fisiología , Activación del Canal Iónico/fisiología , Canales de Potasio/fisiología , Receptores Muscarínicos/fisiología , Sodio/farmacología , Adenosina Trifosfato/análisis , Adenosina Trifosfato/metabolismo , Animales , Glicósidos Cardíacos/farmacología , Embrión de Pollo , Citoplasma/química , Femenino , Atrios Cardíacos/química , Atrios Cardíacos/efectos de los fármacos , Hidrólisis , Magnesio/análisis , Miocardio/química , Miocardio/enzimología , Oocitos/química , Oocitos/enzimología , Oocitos/fisiología , Técnicas de Placa-Clamp , Sodio/análisis , Sodio/fisiología , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , ATPasa Intercambiadora de Sodio-Potasio/fisiología , Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...