Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 128(14): 3454-3462, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38564781

RESUMEN

Deep eutectic solvents with admixed lithium salts are considered as electrolytes in electrochemical devices, such as batteries or supercapacitors. Compared to eutectic mixtures of hydrogen-bond donors and lithium salts, their raw-material costs are significantly lower. Not much is known about glassy freezing and rotational-translation coupling of such systems. Here, we investigate these phenomena by applying dielectric spectroscopy to the widely studied deep eutectic solvent glyceline, to which 1 and 5 mol % LiCl were added. Our study covers a wide temperature range, including a deeply supercooled state. The temperature dependences of the detected dipolar reorientation dynamics and ionic direct current (dc) conductivity reveal the signatures of glassy freezing. In comparison to pure glyceline, the lithium admixture leads to a reduction of ionic conductivity, which is accompanied by a reduction of the rotational dipolar mobility. However, this reduction is much smaller than that for deep eutectic solvents (DESs), where one main component is lithium salt, which we trace back to the lower glass-transition temperatures of lithium-doped DESs. In contrast to pure glyceline, the ionic and dipolar dynamics become increasingly decoupled at low temperatures and obey a fractional Debye-Stokes-Einstein relation, as previously found in other glass-forming liquids. The obtained results demonstrate the relevance of decoupling effects and glass transition to the enhancement of the technically relevant ionic conductivity in such lithium-doped DESs.

2.
J Chem Phys ; 160(5)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38341686

RESUMEN

Glass formation and reorientational motions are widespread but often-neglected features of deep eutectic solvents although both can be relevant for the technically important ionic conductivity at room temperature. Here, we investigate these properties for two mixtures of ethylene glycol and ZnCl2, which were recently considered superior electrolyte materials for application in zinc-ion batteries. For this purpose, we employed dielectric spectroscopy performed in a broad temperature range, extending from the supercooled state at low temperatures up to the liquid phase around room temperature and beyond. We find evidence for a relaxation process arising from dipolar reorientation dynamics, which reveals the clear signatures of glassy freezing. This freezing also governs the temperature dependence of the ionic dc conductivity. We compare the obtained results with those for deep eutectic solvents that are formed by the same hydrogen-bond donor, ethylene glycol, but by two different salts, choline chloride and lithium triflate. The four materials reveal significantly different ionic and reorientational dynamics. Moreover, we find varying degrees of decoupling of rotational dipolar and translational ionic motions, which can partly be described by a fractional Debye-Stokes-Einstein relation. The typical glass-forming properties of these solvents strongly affect their room-temperature conductivity.

3.
J Chem Phys ; 158(18)2023 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-37154277

RESUMEN

By using dielectric spectroscopy in a broad range of temperatures and frequencies, we have investigated dipolar relaxations, the dc conductivity, and the possible occurrence of polar order in AgCN. The conductivity contributions dominate the dielectric response at elevated temperatures and low frequencies, most likely arising from the mobility of the small silver ions. In addition, we observe the dipolar relaxation dynamics of the dumbbell-shaped CN- ions, whose temperature dependence follows the Arrhenius behavior with a hindering barrier of 0.59 eV (57 kJ/mol). It correlates well with a systematic development of the relaxation dynamics with the cation radius, previously observed in various alkali cyanides. By comparison with the latter, we conclude that AgCN does not exhibit a plastic high-temperature phase with free rotation of the cyanide ions. Instead, our results indicate that a phase with quadrupolar order, revealing dipolar head-to-tail disorder of the CN- ions, exists at elevated temperatures up to the decomposition temperature, which crosses over to long-range polar order of the CN dipole moments below about 475 K. Dipole ordering was also reported for NaCN and KCN, and a comparison with these systems suggests a critical relaxation rate of 105-107 Hz, marking the onset of dipolar order in the cyanides. The detected relaxation dynamics in this order-disorder type polar state points to glasslike freezing below about 195 K of a fraction of non-ordered CN dipoles.

4.
Phys Rev E ; 105(5-1): 054609, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35706308

RESUMEN

Glycerol is one of the glass-forming liquids selected by Robert H. Cole in 1950 to start his study of molecular dynamics by dielectric spectroscopy. Seventy-one years have gone by and remarkably no consensus has been reached on the nature and identity of the relaxation processes observed in the dielectric spectra. The macroscopic dielectric relaxation data allow different interpretations to yield contrasting results, and it is not possible to determine which one is most plausible. Coming to the rescue is the application of the nuclear γ-resonance time-domain interferometry (TDI) to glycerol by Saito et al. [Phys. Rev. E 105, L012605 (2022)10.1103/PhysRevE.105.L012605]. Their microscopic TDI data potentially can decide which interpretation of the dielectric spectra of glycerol is most plausible. The attempt was made by Saito et al., but there is a problem in their analysis of the dielectric data of glycerol and hence their conclusion is untenable. In this paper, we critically compare four major interpretations with the TDI data in an effort to identify the most plausible interpretation of the relaxation processes constituting the dielectric spectra of glycerol.

5.
Phys Chem Chem Phys ; 24(11): 6890-6904, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35253024

RESUMEN

Recently, the low-temperature phase of water molecules confined within nanocages formed by the crystalline lattice of water-containing cordierite crystals has been reported to comprise domains with ferroelectrically ordered dipoles within the a, b-planes which are antiferroelectrically alternating along the c-axis. In the present work, comprehensive broad-band dielectric spectroscopy is combined with specific heat studies and molecular dynamics and Monte Carlo simulations in order to investigate in more detail the collective modes and single-particle excitations of nanoconfined water molecules. From DFT-MD simulations we reconstruct the potential-energy landscape experienced by the H2O molecules. A rich set of anisotropic temperature-dependent excitations is observed in the terahertz frequency range. Their origin is associated with the complex rotational/translational vibrations of confined H2O molecules. A strongly temperature dependent relaxational excitation, observed at radio-microwave frequencies for the electric field parallel to the crystallographic a-axis, E||a is analyzed in detail. The temperature dependences of loss-peak frequency and dielectric strength of the excitation together with specific heat data confirm a ferroelectric order-disorder phase transition at T0 ≈ 3 K in the network of H2O dipoles. Additional dielectric data are also provided for polarization E||b, too. Overall, these combined experimental investigations enable detailed conclusions concerning the dynamics of the confined water molecules that develop within their microscopic energy landscapes.

6.
Phys Rev Lett ; 127(16): 166803, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34723611

RESUMEN

Controlling and sensing spin polarization of electrons forms the basis of spintronics. Here, we report a study of the effect of helium on the spin polarization of the tunneling current and magnetic contrast in spin-polarized scanning tunneling microscopy (SP STM). We show that the magnetic contrast in SP STM images recorded in the presence of helium depends sensitively on the tunneling conditions. From tunneling spectra and their variation across the atomic lattice we establish that the helium can be reversibly ejected from the tunneling junction by the tunneling electrons. The energy of the tunneling electrons required to eject the helium depends on the relative spin polarization of the tip and sample, making the microscope sensitive to the magnetic exchange interactions. We show that the time-averaged spin polarization of the tunneling current is suppressed in the presence of helium and thereby demonstrate voltage control of the spin polarization of the tunneling current across the tip-sample junction.

7.
J Chem Phys ; 155(4): 044503, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34340372

RESUMEN

Lithium-salt-based deep eutectic solvents, where the only cation is Li+, are promising candidates as electrolytes in electrochemical energy-storage devices, such as batteries. We have performed broadband dielectric spectroscopy on three such systems, covering a broad temperature and dynamic range that extends from the low-viscosity liquid around room temperature down to the glassy state approaching the glass-transition temperature. We detect a relaxational process that can be ascribed to dipolar reorientational dynamics and exhibits the clear signatures of glassy freezing. We find that the temperature dependence of the ionic dc conductivity and its room-temperature value also are governed by the glassy dynamics of these systems, depending, e.g., on the glass-transition temperature and fragility. Compared to the previously investigated corresponding systems, containing choline chloride instead of a lithium salt, both the reorientational and ionic dynamics are significantly reduced due to variations in the glass-transition temperature and the higher ionic potential of the lithium ions. These lithium-based deep eutectic solvents partly exhibit significant decoupling of the dipolar reorientational and the ionic translational dynamics and approximately follow a fractional Debye-Stokes-Einstein relation, leading to an enhancement of the dc conductivity, especially at low temperatures. The presented results clearly reveal the importance of decoupling effects and of the typical glass-forming properties of these systems for the technically relevant room-temperature conductivity.

8.
J Phys Condens Matter ; 33(44)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34371492

RESUMEN

This topical review provides an overview over recent thermodynamic, infrared, and THz results on the proximate Kitaev spin-liquid. Quantum-spin liquids are exotic phases characterized by the absence of magnetic ordering even at the lowest temperatures and by the occurrence of fractionalized spin excitations. Among those, Kitaev spin liquids are most fascinating as they belong to the rare class of model systems, that can be solved analytically by decomposing localized spinsS= 1/2 into Majorana fermions. The main aim of this review is to summarize experimental evidence obtained by THz spectroscopy and utilizing heat-capacity experiments, which point to the existence of fractionalized excitations in the spin-liquid state, which in α-RuCl3exists at temperatures just above the onset of magnetic order or at in-plane magnetic fields just beyond the quantum-critical point where antiferromagnetic order becomes suppressed. Thermodynamic and spectroscopic results are compared to theoretical predictions and model calculations. In addition, we document recent progress in elucidating the sub-gap (<1 eV) electronic structure of the 4d5ruthenium electrons to characterize their local electronic configuration. The on-site excitation spectra of thedelectrons below the optical gap can be consistently explained using a spin-orbit coupling constant of ∼170 meV and the concept of multiple spin-orbital excitations. Furthermore, we discuss the phonon spectra of the title compound including rigid-plane shear and compression modes of the single molecular layers. In recent theoretical concepts it has been shown that phonons can couple to Majorana fermions and may play a substantial role in establishing the half-integer thermal quantum Hall effect observed in this material.

9.
J Chem Phys ; 154(15): 154501, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33887920

RESUMEN

We performed rheological measurements of the typical deep eutectic solvents (DESs) glyceline, ethaline, and reline in a very broad temperature and dynamic range, extending from the low-viscosity to the high-viscosity supercooled-liquid regime. We find that the mechanical compliance spectra can be well described by the random free-energy barrier hopping model, while the dielectric spectra on the same materials involve significant contributions arising from reorientational dynamics. The temperature-dependent viscosity and structural relaxation time, revealing non-Arrhenius behavior typical for glassy freezing, are compared to the ionic dc conductivity and relaxation times determined by broadband dielectric spectroscopy. For glyceline and ethaline, we find essentially identical temperature dependences for all dynamic quantities. These findings point to a close coupling of the ionic and molecular translational and reorientational motions in these systems. However, for reline, the ionic charge transport appears decoupled from the structural and reorientational dynamics, following a fractional Walden rule. In particular, at low temperatures, the ionic conductivity in this DES is enhanced by about one decade compared to expectations based on the temperature dependence of the viscosity. The results for all three DESs can be understood without invoking a revolving-door mechanism previously considered as a possible charge-transport mechanism in DESs.

10.
Phys Rev Lett ; 125(9): 097203, 2020 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-32915615

RESUMEN

Measurements of the magnetic Grüneisen parameter (Γ_{B}) and specific heat on the Kitaev material candidate α-RuCl_{3} are used to access in-plane field and temperature dependence of the entropy up to 12 T and down to 1 K. No signatures corresponding to phase transitions are detected beyond the boundary of the magnetically ordered region, but only a shoulderlike anomaly in Γ_{B}, involving an entropy increment as small as 10^{-5}Rlog2. These observations put into question the presence of a phase transition between the purported quantum spin liquid and the field-polarized state of α-RuCl_{3}. We show theoretically that at low temperatures Γ_{B} is sensitive to crossings in the lowest excitations within gapped phases, and identify the measured shoulderlike anomaly as being of such origin. Exact diagonalization calculations demonstrate that the shoulderlike anomaly can be reproduced in extended Kitaev models that gain proximity to an additional phase at finite field without entering it. We discuss manifestations of this proximity in other measurements.

11.
Nat Commun ; 11(1): 3927, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32764722

RESUMEN

Intermolecular hydrogen bonds impede long-range (anti-)ferroelectric order of water. We confine H2O molecules in nanosized cages formed by ions of a dielectric crystal. Arranging them in channels at a distance of ~5 Å with an interchannel separation of ~10 Å prevents the formation of hydrogen networks while electric dipole-dipole interactions remain effective. Here, we present measurements of the temperature-dependent dielectric permittivity, pyrocurrent, electric polarization and specific heat that indicate an order-disorder ferroelectric phase transition at T0 ≈ 3 K in the water dipolar lattice. Ab initio molecular dynamics and classical Monte Carlo simulations reveal that at low temperatures the water molecules form ferroelectric domains in the ab-plane that order antiferroelectrically along the channel direction. This way we achieve the long-standing goal of arranging water molecules in polar order. This is not only of high relevance in various natural systems but might open an avenue towards future applications in biocompatible nanoelectronics.

12.
J Chem Phys ; 153(1): 014502, 2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32640802

RESUMEN

We have performed a dielectric investigation of the ionic charge transport and the relaxation dynamics in plastic crystalline 1-cyano-adamantane (CNA) and in two mixtures of CNA with the related plastic crystals adamantane or 2-adamantanon. Ionic charge carriers were provided by adding 1% of Li salt. The molecules of these compounds have nearly globular shape and, thus, the so-called revolving-door mechanism assumed to promote ionic charge transport via molecular reorientations in other PC electrolytes should not be active here. Indeed, a comparison of the dc resistivity and the reorientational α-relaxation times in the investigated PCs reveals complete decoupling of both dynamics. Similar to other PCs, we find a significant mixing-induced enhancement of the ionic conductivity. Finally, these solid-state electrolytes reveal a second relaxation process, slower than the α-relaxation, which is related to ionic hopping. Due to the mentioned decoupling, it can be unequivocally detected and is not superimposed by the reorientational contributions as found for most other ionic conductors.

13.
Phys Chem Chem Phys ; 22(2): 507-511, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31825416

RESUMEN

Uhl et al. [J. Chem. Phys., 2019, 150, 024504] studied the molecular dynamics of glycerol confined in a microporous zeolitic imidazolate framework (ZIF-8) with well-defined pore diameters of 1.16 nm by broadband dielectric spectroscopy. Of interest is a fast process in the central part of the pores identified as the α-relaxation of the confined supercooled glycerol with relaxation times τα,conf(T) reduced from τα,bulk(T) of bulk glycerol and having a temperature dependence different from the super-Arrhenius temperature of the latter. The focus of Uhl et al. was relating the confined molecular dynamics to the cooperativity length scales Lcorr(T) of molecular motion above the glass transition, and deducing the limiting high-temperature value of the correlation length of about 1.22 nm. Not yet considered by anyone are the observed values of τα,conf(T) and temperature dependence. Since the cooperativity length scales Lcorr(T) were found to be larger than the pore size of ZIF-8 over the temperature range studied and the density of the glycerol in the pore is possibly lower than the bulk, the cooperativity of the α-relaxation of glycerol confined in ZIF-8 is drastically reduced. Thus, within the framework of the Coupling Model (CM), τα,conf(T) should be nearly the same as the primitive relaxation time τ0(T) for glycerol when devoid of intermolecular coupling and cooperativity. Consistent with the absence of cooperativity of the glycerol confined in ZIF-8, we find the calculated τα,conf(T) are either the same or slightly longer than the calculated values of τ0(T). The quantitative prediction of the CM is verified. At this time we know of no other theory that can make such a quantitative prediction.

14.
Phys Rev Lett ; 123(6): 067202, 2019 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-31491175

RESUMEN

We report a high-resolution terahertz spectroscopic study of quantum spin dynamics in the antiferromagnetic Heisenberg-Ising spin-chain compound BaCo_{2}V_{2}O_{8} as a function of temperature and longitudinal magnetic field. Confined spinon excitations are observed in an antiferromagnetic phase below T_{N}≃5.5 K. In a field-induced gapless phase above B_{c}=3.8 T, we identify many-body string excitations as well as low-energy fractional psinon or antipsinon excitations by comparing to Bethe ansatz calculations. In the vicinity of B_{c}, the high-energy string excitations are found to have a dominant contribution to the spin dynamics as compared with the fractional excitations.

15.
J Chem Phys ; 150(24): 244507, 2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31255051

RESUMEN

Many plastic crystals, molecular solids with long-range, center-of-mass crystalline order but dynamic disorder of the molecular orientations, are known to exhibit exceptionally high ionic conductivity. This makes them promising candidates for applications as solid-state electrolytes, e.g., in batteries. Interestingly, it was found that the mixing of two different plastic-crystalline materials can considerably enhance the ionic dc conductivity, an important benchmark quantity for electrochemical applications. An example is the admixture of different nitriles to succinonitrile, the latter being one of the most prominent plastic-crystalline ionic conductors. However, until now, only few such mixtures were studied. In the present work, we investigate succinonitrile mixed with malononitrile, adiponitrile, and pimelonitrile to which 1 mol. % of Li ions was added. Using differential scanning calorimetry and dielectric spectroscopy, we examine the phase behavior and the dipolar and ionic dynamics of these systems. We especially address the mixing-induced enhancement of the ionic conductivity and the coupling of the translational ionic mobility to the molecular reorientational dynamics, probably arising via a "revolving-door" mechanism.

16.
J Chem Phys ; 150(2): 024504, 2019 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-30646699

RESUMEN

In the present work, we employ broadband dielectric spectroscopy to study the molecular dynamics of the prototypical glass former glycerol confined in two microporous zeolitic imidazolate frameworks (ZIF-8 and ZIF-11) with well-defined pore diameters of 1.16 and 1.46 nm, respectively. The spectra reveal information on the modified α relaxation of the confined supercooled liquid, whose temperature dependence exhibits clear deviations from the typical super-Arrhenius temperature dependence of the bulk material, depending on the temperature and pore size. This allows assigning well-defined cooperativity length scales of molecular motion to certain temperatures above the glass transition. We relate these and previous results on glycerol confined in other host systems to the temperature-dependent length scale deduced from nonlinear dielectric measurements. The combined experimental data can be consistently described by a critical divergence of this correlation length as expected within theoretical approaches assuming that the glass transition is due to an underlying phase transition.

17.
Phys Rev Lett ; 120(20): 207205, 2018 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-29864334

RESUMEN

We report on magnetization, sound-velocity, and magnetocaloric-effect measurements of the Ising-like spin-1/2 antiferromagnetic chain system BaCo_{2}V_{2}O_{8} as a function of temperature down to 1.3 K and an applied transverse magnetic field up to 60 T. While across the Néel temperature of T_{N}∼5 K anomalies in magnetization and sound velocity confirm the antiferromagnetic ordering transition, at the lowest temperature the field-dependent measurements reveal a sharp softening of sound velocity v(B) and a clear minimum of temperature T(B) at B_{⊥}^{c,3D}=21.4 T, indicating the suppression of the antiferromagnetic order. At higher fields, the T(B) curve shows a broad minimum at B_{⊥}^{c}=40 T, accompanied by a broad minimum in the sound velocity and a saturationlike magnetization. These features signal a quantum phase transition, which is further characterized by the divergent behavior of the Grüneisen parameter Γ_{B}∝(B-B_{⊥}^{c})^{-1}. By contrast, around the critical field, the Grüneisen parameter converges as temperature decreases, pointing to a quantum critical point of the one-dimensional transverse-field Ising model.

18.
Phys Rev Lett ; 120(13): 137201, 2018 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-29694199

RESUMEN

Excitations in a spin ice behave as magnetic monopoles, and their population and mobility control the dynamics of a spin ice at low temperature. CdEr_{2}Se_{4} is reported to have the Pauling entropy characteristic of a spin ice, but its dynamics are three orders of magnitude faster than the canonical spin ice Dy_{2}Ti_{2}O_{7}. In this Letter we use diffuse neutron scattering to show that both CdEr_{2}Se_{4} and CdEr_{2}S_{4} support a dipolar spin ice state-the host phase for a Coulomb gas of emergent magnetic monopoles. These Coulomb gases have similar parameters to those in Dy_{2}Ti_{2}O_{7}, i.e., dilute and uncorrelated, and so cannot provide three orders faster dynamics through a larger monopole population alone. We investigate the monopole dynamics using ac susceptometry and neutron spin echo spectroscopy, and verify the crystal electric field Hamiltonian of the Er^{3+} ions using inelastic neutron scattering. A quantitative calculation of the monopole hopping rate using our Coulomb gas and crystal electric field parameters shows that the fast dynamics in CdEr_{2}X_{4} (X=Se, S) are primarily due to much faster monopole hopping. Our work suggests that CdEr_{2}X_{4} offer the possibility to study alternative spin ice ground states and dynamics, with equilibration possible at much lower temperatures than the rare earth pyrochlore examples.

19.
Phys Rev Lett ; 120(8): 085705, 2018 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-29543001

RESUMEN

Experimental evidence for the Gardner transition, theoretically predicted to arise deep in the glassy state of matter, is scarce. At this transition, the energy landscape sensed by the particles forming the glass is expected to become more complex. In the present Letter, we report the dielectric response of two typical glass formers with well-pronounced Johari-Goldstein ß relaxation, following this response down to unprecedented low temperatures, far below the glass transition. As the Johari-Goldstein process is believed to arise from the local structure of the energy landscape, its investigation seems an ideal tool to seek evidence for the Gardner transition. Indeed, we find an unusual broadening of the ß relaxation below about 110 K for sorbitol and 100 K for xylitol, in excess of the expected broadening arising from a distribution of energy barriers. These results are well consistent with the presence of the Gardner transition in canonical structural glass formers.

20.
Phys Rev Lett ; 120(8): 087001, 2018 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-29543031

RESUMEN

We report the first determination of the in-plane complex optical conductivity of 1111 high-T_{c} superconducting iron oxypnictide single crystals PrFeAs(O,F) and thin films SmFeAs(O,F) by means of conventional and microfocused infrared spectroscopy, ellipsometry, and time-domain THz transmission spectroscopy. A strong itinerant contribution is found to exhibit a dramatic difference in coherence between the crystal and the film. Using extensive temperature-dependent measurements of THz transmission, we identify a previously undetected 2.5-meV collective mode in the optical conductivity of SmFeAs(O,F), which is strongly suppressed at T_{c} and experiences an anomalous T-linear softening and narrowing below T^{*}≈110 K≫T_{c}. The suppression of the infrared absorption in the superconducting state reveals a large optical superconducting gap with a similar gap ratio 2Δ/k_{B}T_{c}≈7 in both materials, indicating strong pairing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...