Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Anim Sci Biotechnol ; 12(1): 79, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34261531

RESUMEN

BACKGROUND: Ruminants rely upon a complex community of microbes in their rumen to convert host-indigestible feed into nutrients. However, little is known about the association between the rumen microbiota and feed efficiency traits in Nellore (Bos indicus) cattle, a breed of major economic importance to the global beef market. Here, we compare the composition of the bacterial, archaeal and fungal communities in the rumen of Nellore steers with high and low feed efficiency (FE) phenotypes, as measured by residual feed intake (RFI). RESULTS: The Firmicutes to Bacteroidetes ratio was significantly higher (P < 0.05) in positive-RFI steers (p-RFI, low feed efficiency) than in negative-RFI (n-RFI, high feed efficiency) steers. The differences in bacterial composition from steers with high and low FE were mainly associated with members of the families Lachnospiraceae, Ruminococcaceae and Christensenellaceae, as well as the genus Prevotella. Archaeal community richness was lower (P < 0.05) in p-RFI than in n-RFI steers and the genus Methanobrevibacter was either increased or exclusive of p-RFI steers. The fungal genus Buwchfawromyces was more abundant in the rumen solid fraction of n-RFI steers (P < 0.05) and a highly abundant OTU belonging to the genus Piromyces was also increased in the rumen microbiota of high-efficiency steers. However, analysis of rumen fermentation variables and functional predictions indicated similar metabolic outputs for the microbiota of distinct FE groups. CONCLUSIONS: Our results demonstrate that differences in the ruminal microbiota of high and low FE Nellore steers comprise specific taxa from the bacterial, archaeal and fungal communities. Biomarker OTUs belonging to the genus Piromyces were identified in animals showing high feed efficiency, whereas among archaea, Methanobrevibacter was associated with steers classified as p-RFI. The identification of specific RFI-associated microorganisms in Nellore steers could guide further studies targeting the isolation and functional characterization of rumen microbes potentially important for the energy-harvesting efficiency of ruminants.

2.
Cell Tissue Res ; 382(2): 337-349, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32447450

RESUMEN

The burrower bug Scaptocoris castanea is an important soybean and pasture pest in Brazil, with an underground habit feeding directly on the sap of the roots. Underground habit hinders control and knowledge of the biology and physiology of this pest. This study describes the anatomy, histology, ultrastructure and symbionts of the midgut of S. castanea. The midgut of S. castanea is anatomically divided into five regions (ventricles). Ventricles 1-3 are similar between males and females, with cells specialized in digestion and absorption of nutrients, water transport and homeostasis. Ventricle 4 has squamous epithelium forming crypts and harboring bacteria in the lumen. Ventricle 5 of males is small with cells containing apical microvilli and broad basal folds with many openings for hemocoel, while in females, this region of the midgut is well developed and colonized by intracellular bacteria, characterizing bacteriocytes. The main bacteria are Gammaproteobacteria. The results show sexual dimorphism in ventricle 5 of the midgut of S. castanea, with formation of bacteriocytes in the females, while the other regions are involved in digestive processes in both sexes.


Asunto(s)
Bacterias/patogenicidad , Hemípteros/microbiología , Microbiota/fisiología , Animales , Femenino , Masculino
3.
Front Microbiol ; 10: 1263, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31293524

RESUMEN

The ruminant gastrointestinal tract (GIT) microbiome plays a major role in the health, physiology and production traits of the host. In this work, we characterized the bacterial and fungal microbiota of the rumen, small intestine (SI), cecum and feces of 27 Nelore steers using next-generation sequencing and evaluated biochemical parameters within the GIT segments. We found that only the bacterial microbiota clustered according to each GIT segment. Bacterial diversity and richness as well as volatile fatty acid concentration was lowest in the SI. Taxonomic grouping of bacterial operational taxonomic units (OTUs) revealed that Lachnospiraceae (24.61 ± SD 6.58%) and Ruminococcaceae (20.87 ± SD 4.22%) were the two most abundant taxa across the GIT. For the fungi, the family Neocallismastigaceae dominated in all GIT segments, with the genus Orpinomyces being the most abundant. Twenty-eight bacterial and six fungal OTUs were shared across all GIT segments in at least 50% of the steers. We also evaluated if the fecal-associated microbiota of steers showing negative and positive residual feed intake (n-RFI and p-RFI, respectively) was associated with their feed efficiency phenotype. Diversity indices for both bacterial and fungal fecal microbiota did not vary between the two feed efficiency groups. Differences in the fecal bacterial composition between high and low feed efficiency steers were primarily assigned to OTUs belonging to the families Lachnospiraceae and Ruminococcaceae and to the genus Prevotella. The fungal OTUs shared across the GIT did not vary between feed efficiency groups, but 7 and 3 OTUs were found only in steers with positive and negative RFI, respectively. These results provide further insights into the composition of the Nelore GIT microbiota, which could have implications for improving animal health and productivity. Our findings also reveal differences in fecal-associated bacterial OTUs between steers from different feed efficiency groups, suggesting that fecal sampling may represent a non-invasive strategy to link the bovine microbiota with productivity phenotypes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA