Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(39): e202306514, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37505449

RESUMEN

The study presents an ab-initio based framework for the automated construction of microkinetic mechanisms considering correlated uncertainties in all energetic parameters and estimation routines. 2000 unique microkinetic models were generated within the uncertainty space of the BEEF-vdW functional for the oxidation reactions of representative exhaust gas emissions from stoichiometric combustion engines over Pt(111) and compared to experiments through multiscale modeling. The ensemble of simulations stresses the importance of considering uncertainties. Within this set of first-principles-based models, it is possible to identify a microkinetic mechanism that agrees with experimental data. This mechanism can be traced back to a single exchange-correlation functional, and it suggests that Pt(111) could be the active site for the oxidation of light hydrocarbons. The study provides a universal framework for the automated construction of reaction mechanisms with correlated uncertainty quantification, enabling a DFT-constrained microkinetic model optimization for other heterogeneously catalyzed systems.

2.
ChemSusChem ; 16(6): e202300301, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36951358

RESUMEN

Invited for this month's cover is the research group of Olaf Deutschmann and the team of Patrick Lott at the Karlsruhe Institute of Technology. The Cover image shows how an electrically heated reactor converts methane from natural gas or biogas into gaseous hydrogen and elemental carbon by means of high-temperature pyrolysis. The transfer of this technology into industrial applications can be a valuable contribution towards a decarbonization of the chemical industry and the establishment of a hydrogen economy. The Research Article itself is available at 10.1002/cssc.202201720.

3.
J Phys Chem A ; 127(9): 2136-2147, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36848592

RESUMEN

Methane pyrolysis is a very attractive and climate-friendly process for hydrogen production and the sequestration of carbon as solid material. The formation of soot particles in methane pyrolysis reactors needs to be understood for technology scale-up calling for appropriate soot growth models. A monodisperse model is coupled with a plug flow reactor model and elementary-step reaction mechanisms to numerically simulate processes in methane pyrolysis reactors, namely, the chemical conversion of methane to hydrogen, formation of C-C coupling products and polycyclic aromatic hydrocarbons, and growth of soot particles. The soot growth model accounts for the effective structure of the aggregates by calculating the coagulation frequency from the free-molecular regime to the continuum regime. It predicts the soot mass, particle number, area, and volume concentration, along with the particle size distribution. For comparison, experiments on methane pyrolysis are carried out at different temperatures and collected soot samples are characterized using Raman spectroscopy, transmission electron microscopy (TEM), and dynamic light scattering (DLS).

4.
ChemSusChem ; 16(6): e202201720, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36413742

RESUMEN

Using natural gas and sustainable biogas as feed, high-temperature pyrolysis represents a potential technology for large-scale hydrogen production and simultaneous carbon capture. Further utilization of solid carbon accruing during the process (i. e., in battery industry or for metallurgy) increases the process's economic chances. This study demonstrated the feasibility of gas-phase methane pyrolysis for hydrogen production and carbon capture in an electrically heated high-temperature reactor operated between 1200 and 1600 °C under industrially relevant conditions. While hydrogen addition controlled methane conversion and suppressed the formation of undesired byproducts, an increasing residence time decreased the amount of byproducts and benefited high hydrogen yields. A temperature of 1400 °C ensured almost full methane conversion, moderate byproduct formation, and high hydrogen yield. A reaction flow analysis of the gas-phase kinetics revealed acetylene, ethylene, and benzene as the main intermediate products and precursors of carbon formation.

5.
J Phys Chem Lett ; 10(24): 7698-7705, 2019 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-31730353

RESUMEN

Spatially resolved operando HERFD-XANES (high energy resolution fluorescence detected X-ray absorption near edge structure) complemented by CO concentration gradient profiles along the catalyst bed (SpaciPro) was used to identify the dominant reaction paths for the low and high temperature CO oxidation on Pt/CeO2 and Pt/Al2O3. At low temperatures, features associated with CO adsorption on Pt were found for both catalysts. During the oxidation reaction light-off, the evolution of the spectral and catalytic profile diverged along the catalyst bed. The CO oxidation rate was high on Pt/CeO2 from the beginning of the catalyst bed with CO being adsorbed on Pt, whereas low CO conversion due to strong CO poisoning was found on Pt/Al2O3. This correlation of the CO concentration gradient with unique insight by HERFD-XANES gave direct proof of the crucial contribution of the Pt-CeO2 perimeter sites overcoming the CO self-inhibition effect at low temperatures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...