Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Front Microbiol ; 15: 1351678, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638909

RESUMEN

Advances in high-throughput technologies have enhanced our ability to describe microbial communities as they relate to human health and disease. Alongside the growth in sequencing data has come an influx of resources that synthesize knowledge surrounding microbial traits, functions, and metabolic potential with knowledge of how they may impact host pathways to influence disease phenotypes. These knowledge bases can enable the development of mechanistic explanations that may underlie correlations detected between microbial communities and disease. In this review, we survey existing resources and methodologies for the computational integration of broad classes of microbial and host knowledge. We evaluate these knowledge bases in their access methods, content, and source characteristics. We discuss challenges of the creation and utilization of knowledge bases including inconsistency of nomenclature assignment of taxa and metabolites across sources, whether the biological entities represented are rooted in ontologies or taxonomies, and how the structure and accessibility limit the diversity of applications and user types. We make this information available in a code and data repository at: https://github.com/lozuponelab/knowledge-source-mappings. Addressing these challenges will allow for the development of more effective tools for drawing from abundant knowledge to find new insights into microbial mechanisms in disease by fostering a systematic and unbiased exploration of existing information.

2.
Microb Ecol ; 85(4): 1620-1629, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35596750

RESUMEN

Bacterial zwitterionic capsular polysaccharides (ZPS), such as polysaccharide A (PSA) of the intestinal commensal Bacteroides fragilis, have been shown to modulate T cells, including inducing anti-inflammatory IL-10-secreting T regulatory cells (Tregs). We previously used a genomic screen to identify diverse host-associated bacteria with the predicted genetic capacity to produce ZPSs related to PSA of B. fragilis and hypothesized that genetic disruption (KO) of a key functional gene within these operons would reduce the anti-inflammatory activity of these bacteria. We found that ZPS-KO bacteria in two common gut commensals, Bacteroides uniformis and Bacteroides cellulosilyticus, had a reduced ability to induce Tregs and IL-10 in stimulations of human peripheral blood mononuclear cells (PBMCs). Additionally, we found that macrophage stimulated with either wildtype B. fragilis or B. uniformis produced significantly more IL-10 than KOs, indicating a potentially novel function of ZPS of shifting the cytokine response in macrophages to a more anti-inflammatory state. These findings support the hypothesis that these related ZPS may represent a shared strategy to modulate host immune responses.


Asunto(s)
Interleucina-10 , Leucocitos Mononucleares , Humanos , Interleucina-10/genética , Polisacáridos Bacterianos , Bacteroides fragilis/genética , Antiinflamatorios , Bacterias
3.
Mol Ecol Resour ; 23(1): 312-325, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36001047

RESUMEN

Microbiome studies are often limited by a lack of statistical power due to small sample sizes and a large number of features. This problem is exacerbated in correlative studies of multi-omic datasets. Statistical power can be increased by finding and summarizing modules of correlated observations, which is one dimensionality reduction method. Additionally, modules provide biological insight as correlated groups of microbes can have relationships among themselves. To address these challenges, we developed SCNIC: Sparse Cooccurrence Network Investigation for compositional data. SCNIC is open-source software that can generate correlation networks and detect and summarize modules of highly correlated features. Modules can be formed using either the Louvain Modularity Maximization (LMM) algorithm or a Shared Minimum Distance algorithm (SMD) that we newly describe here and relate to LMM using simulated data. We applied SCNIC to two published datasets and we achieved increased statistical power and identified microbes that not only differed across groups, but also correlated strongly with each other, suggesting shared environmental drivers or cooperative relationships among them. SCNIC provides an easy way to generate correlation networks, identify modules of correlated features and summarize them for downstream statistical analysis. Although SCNIC was designed considering properties of microbiome data, such as compositionality and sparsity, it can be applied to a variety of data types including metabolomics data and used to integrate multiple data types. SCNIC allows for the identification of functional microbial relationships at scale while increasing statistical power through feature reduction.


Asunto(s)
Microbiota , Programas Informáticos , Algoritmos
4.
Environ Microbiome ; 17(1): 34, 2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35752802

RESUMEN

BACKGROUND: Understanding the factors that influence microbes' environmental distributions is important for determining drivers of microbial community composition. These include environmental variables like temperature and pH, and higher-dimensional variables like geographic distance and host species phylogeny. In microbial ecology, "specificity" is often described in the context of symbiotic or host parasitic interactions, but specificity can be more broadly used to describe the extent to which a species occupies a narrower range of an environmental variable than expected by chance. Using a standardization we describe here, Rao's (Theor Popul Biol, 1982. https://doi.org/10.1016/0040-5809(82)90004-1, Sankhya A, 2010. https://doi.org/10.1007/s13171-010-0016-3 ) Quadratic Entropy can be conveniently applied to calculate specificity of a feature, such as a species, to many different environmental variables. RESULTS: We present our R package specificity for performing the above analyses, and apply it to four real-life microbial data sets to demonstrate its application. We found that many fungi within the leaves of native Hawaiian plants had strong specificity to rainfall and elevation, even though these variables showed minimal importance in a previous analysis of fungal beta-diversity. In Antarctic cryoconite holes, our tool revealed that many bacteria have specificity to co-occurring algal community composition. Similarly, in the human gut microbiome, many bacteria showed specificity to the composition of bile acids. Finally, our analysis of the Earth Microbiome Project data set showed that most bacteria show strong ontological specificity to sample type. Our software performed as expected on synthetic data as well. CONCLUSIONS: specificity is well-suited to analysis of microbiome data, both in synthetic test cases, and across multiple environment types and experimental designs. The analysis and software we present here can reveal patterns in microbial taxa that may not be evident from a community-level perspective. These insights can also be visualized and interactively shared among researchers using specificity's companion package, specificity.shiny.

5.
NPJ Biofilms Microbiomes ; 8(1): 15, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35365681

RESUMEN

Clostridioides difficile infection (CDI) is the leading cause of hospital-acquired diarrhea, and emerging evidence has linked dietary components with CDI pathogenesis, suggesting that dietary modulation may be an effective strategy for prevention. Here, we show that mice fed a high-fat/low-fiber "Western-type" diet (WD) had dramatically increased mortality in a murine model of antibiotic-induced CDI compared to a low-fat/low-fiber (LF/LF) diet and standard mouse chow controls. We found that the WD had a pro- C. difficile bile acid composition that was driven in part by higher levels of primary bile acids that are produced to digest fat, and a lower level of secondary bile acids that are produced by the gut microbiome. This lack of secondary bile acids was associated with a greater disturbance to the gut microbiome with antibiotics in both the WD and LF/LF diet compared to mouse chow. Mice fed the WD also had the highest level of toxin TcdA just prior to the onset of mortality, but not of TcdB or increased inflammation. These findings indicate that dietary intervention to decrease fat may complement previously proposed dietary intervention strategies to prevent CDI in high-risk individuals.


Asunto(s)
Toxinas Bacterianas , Clostridioides difficile , Animales , Antibacterianos/efectos adversos , Clostridioides , Grasas de la Dieta , Ratones
6.
AIDS Res Hum Retroviruses ; 38(3): 173-180, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34969255

RESUMEN

In October of 2020, researchers from around the world met online for the sixth annual International Workshop on Microbiome in HIV Pathogenesis, Prevention, and Treatment. New research was presented on the roles of the microbiome on immune response and HIV transmission and pathogenesis and the potential for alterations in the microbiome to decrease transmission and affect comorbidities. This article presents a summary of the findings reported.


Asunto(s)
Infecciones por VIH , Microbiota , Comorbilidad , Infecciones por VIH/prevención & control , Humanos , Microbiota/fisiología
7.
Front Immunol ; 13: 1072720, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36605218

RESUMEN

Introduction: People living with HIV infection (PLWH) exhibit elevated levels of gastrointestinal inflammation. Potential causes of this inflammation include HIV infection and associated immune dysfunction, sexual behaviors among men who have sex with men (MSM) and gut microbiome composition. Methods: To better understand the etiology of gastrointestinal inflammation we examined levels of 28 fecal soluble immune factors (sIFs) and the fecal microbiome in well-defined cohorts of HIV seronegative MSM (MSM-SN), MSM with untreated HIV infection (MSM-HIV) and MSM with HIV on anti-retroviral treatment (MSMART). Additionally, fecal solutes from these participants were used to stimulate T-84 colonic epithelial cells to assess barrier function. Results: Both MSM cohorts with HIV had elevated levels of fecal calprotectin, a clinically relevant marker of GI inflammation, and nine inflammatory fecal sIFs (GM-CSF, ICAM-1, IL-1ß, IL-12/23, IL-15, IL-16, TNF-ß, VCAM-1, and VEGF). Interestingly, four sIFs (GM-CSF, ICAM-1, IL-7 and IL-12/23) were significantly elevated in MSM-SN compared to seronegative male non-MSM. Conversely, IL-22 and IL-13, cytokines beneficial to gut health, were decreased in all MSM with HIV and MSM-SN respectively. Importantly, all of these sIFs significantly correlated with calprotectin, suggesting they play a role in GI inflammation. Principal coordinate analysis revealed clustering of fecal sIFs by MSM status and significant associations with microbiome composition. Additionally, fecal solutes from participants in the MSM-HIV cohort significantly decreased colonic transcellular fluid transport in vitro, compared to non-MSM-SN, and this decrease associated with overall sIF composition and increased concentrations of eight inflammatory sIFs in participants with HIV. Lastly, elevated levels of plasma, sCD14 and sCD163, directly correlated with decreased transcellular transport and microbiome composition respectively, indicating that sIFs and the gut microbiome are associated with, and potentially contribute to, bacterial translocation. Conclusion: Taken together, these data demonstrate that inflammatory sIFs are elevated in MSM, regardless of HIV infection status, and are associated with the gut microbiome and intestinal barrier function.


Asunto(s)
Infecciones por VIH , Microbiota , Minorías Sexuales y de Género , Humanos , Masculino , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Molécula 1 de Adhesión Intercelular , Homosexualidad Masculina , Factores Inmunológicos , Inflamación , Interleucina-12 , Complejo de Antígeno L1 de Leucocito
8.
Gut Microbes ; 13(1): 1997292, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34818131

RESUMEN

Men who have sex with men (MSM), regardless of HIV infection status, have an intestinal microbiome that is compositionally distinct from men who have sex with women (MSW) and women. We recently showed HIV-negative MSM have elevated levels of intestinal CD4+ T cells expressing CCR5, a critical co-receptor for HIV. Whether elevated expression of CCR5 is driven by the altered gut microbiome composition in MSM has not been explored. Here we used in vitro stimulation of gut Lamina Propria Mononuclear Cells (LPMCs) with whole intact microbial cells isolated from stool to demonstrate that fecal bacterial communities (FBCs) from HIV-positive/negative MSM induced higher frequencies of CCR5+ CD4+ T cells compared to FBCs from HIV-negative MSW and women. To identify potential microbial drivers, we related the frequency of CCR5+ CD4+ T cells to the abundance of individual microbial taxa in rectal biopsy of HIV-positive/negative MSM and controls, and Holdemanella biformis was strongly associated with increased frequency of CCR5+ CD4+ T cells. We used in vitro stimulation of gut LPMCs with the type strain of H. biformis, a second strain of H.biformis and an isolate of the closely related Holdemanella porci , cultured from either a HIV-positive or a HIV-negative MSM stool. H. porci elevated the frequency of both CCR5+ CD4+ T cells and the ratio of TNF-α/IL-10 Genomic comparisons of the 3 Holdemanella isolates revealed unique cell wall and capsular components, which may be responsible for their differences in immunogenicity. These findings describe a novel mechanism potentially linking intestinal dysbiosis in MSM to HIV transmission and mucosal pathogenesis.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Firmicutes/inmunología , Microbioma Gastrointestinal/inmunología , Infecciones por VIH/microbiología , Homosexualidad Masculina , Mucosa Intestinal/inmunología , Receptores CCR5/metabolismo , Citocinas/metabolismo , Disbiosis/inmunología , Disbiosis/microbiología , Heces/microbiología , Femenino , Firmicutes/clasificación , Firmicutes/genética , Firmicutes/aislamiento & purificación , Genoma Bacteriano/genética , Infecciones por VIH/inmunología , Infecciones por VIH/transmisión , Humanos , Leucocitos Mononucleares/metabolismo , Masculino , Minorías Sexuales y de Género
9.
mSystems ; 6(3)2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34006628

RESUMEN

Poor metabolic health, characterized by insulin resistance and dyslipidemia, is higher in people living with HIV and has been linked with inflammation, antiretroviral therapy (ART) drugs, and ART-associated lipodystrophy (LD). Metabolic disease is associated with gut microbiome composition outside the context of HIV but has not been deeply explored in HIV infection or in high-risk men who have sex with men (HR-MSM), who have a highly altered gut microbiome composition. Furthermore, the contribution of increased bacterial translocation and associated systemic inflammation that has been described in HIV-positive and HR-MSM individuals has not been explored. We used a multiomic approach to explore relationships between impaired metabolic health, defined using fasting blood markers, gut microbes, immune phenotypes, and diet. Our cohort included ART-treated HIV-positive MSM with or without LD, untreated HIV-positive MSM, and HR-MSM. For HIV-positive MSM on ART, we further explored associations with the plasma metabolome. We found that elevated plasma lipopolysaccharide binding protein (LBP) was the most important predictor of impaired metabolic health and network analysis showed that LBP formed a hub joining correlated microbial and immune predictors of metabolic disease. Taken together, our results suggest the role of inflammatory processes linked with bacterial translocation and interaction with the gut microbiome in metabolic disease among HIV-positive and -negative MSM.IMPORTANCE The gut microbiome in people living with HIV (PLWH) is of interest since chronic infection often results in long-term comorbidities. Metabolic disease is prevalent in PLWH even in well-controlled infection and has been linked with the gut microbiome in previous studies, but little attention has been given to PLWH. Furthermore, integrated analyses that consider gut microbiome, together with diet, systemic immune activation, metabolites, and demographics, have been lacking. In a systems-level analysis of predictors of metabolic disease in PLWH and men who are at high risk of acquiring HIV, we found that increased lipopolysaccharide-binding protein, an inflammatory marker indicative of compromised intestinal barrier function, was associated with worse metabolic health. We also found impaired metabolic health associated with specific dietary components, gut microbes, and host and microbial metabolites. This study lays the framework for mechanistic studies aimed at targeting the microbiome to prevent or treat metabolic endotoxemia in HIV-infected individuals.

10.
Obesity (Silver Spring) ; 29(5): 859-869, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33811477

RESUMEN

OBJECTIVE: Identifying predictors of weight loss and clinical outcomes may increase understanding of individual variability in weight loss response. We hypothesized that baseline multiomic features, including DNA methylation (DNAme), metabolomics, and gut microbiome, would be predictive of short-term changes in body weight and other clinical outcomes within a comprehensive weight loss intervention. METHODS: Healthy adults with overweight or obesity (n = 62, age 18-55 years, BMI 27-45 kg/m2 , 75.8% female) participated in a 1-year behavioral weight loss intervention. To identify baseline omic predictors of changes in clinical outcomes at 3 and 6 months, whole-blood DNAme, plasma metabolites, and gut microbial genera were analyzed. RESULTS: A network of multiomic relationships informed predictive models for 10 clinical outcomes (body weight, waist circumference, fat mass, hemoglobin A1c , homeostatic model assessment of insulin resistance, total cholesterol, triglycerides, C-reactive protein, leptin, and ghrelin) that changed significantly (P < 0.05). For eight of these, adjusted R2 ranged from 0.34 to 0.78. Our models identified specific DNAme sites, gut microbes, and metabolites that were predictive of variability in weight loss, waist circumference, and circulating triglycerides and that are biologically relevant to obesity and metabolic pathways. CONCLUSIONS: These data support the feasibility of using baseline multiomic features to provide insight for precision nutrition-based weight loss interventions.


Asunto(s)
Terapia Conductista/métodos , Obesidad/terapia , Pérdida de Peso/fisiología , Programas de Reducción de Peso/métodos , Adolescente , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
11.
BMC Bioinformatics ; 22(1): 80, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33607938

RESUMEN

BACKGROUND: One goal of multi-omic studies is to identify interpretable predictive models for outcomes of interest, with analytes drawn from multiple omes. Such findings could support refined biological insight and hypothesis generation. However, standard analytical approaches are not designed to be "ome aware." Thus, some researchers analyze data from one ome at a time, and then combine predictions across omes. Others resort to correlation studies, cataloging pairwise relationships, but lacking an obvious approach for cohesive and interpretable summaries of these catalogs. METHODS: We present a novel workflow for building predictive regression models from network neighborhoods in multi-omic networks. First, we generate pairwise regression models across all pairs of analytes from all omes, encoding the resulting "top table" of relationships in a network. Then, we build predictive logistic regression models using the analytes in network neighborhoods of interest. We call this method CANTARE (Consolidated Analysis of Network Topology And Regression Elements). RESULTS: We applied CANTARE to previously published data from healthy controls and patients with inflammatory bowel disease (IBD) consisting of three omes: gut microbiome, metabolomics, and microbial-derived enzymes. We identified 8 unique predictive models with AUC > 0.90. The number of predictors in these models ranged from 3 to 13. We compare the results of CANTARE to random forests and elastic-net penalized regressions, analyzing AUC, predictions, and predictors. CANTARE AUC values were competitive with those generated by random forests and  penalized regressions. The top 3 CANTARE models had a greater dynamic range of predicted probabilities than did random forests and penalized regressions (p-value = 1.35 × 10-5). CANTARE models were significantly more likely to prioritize predictors from multiple omes than were the alternatives (p-value = 0.005). We also showed that predictive models from a network based on pairwise models with an interaction term for IBD have higher AUC than predictive models built from a correlation network (p-value = 0.016). R scripts and a CANTARE User's Guide are available at https://sourceforge.net/projects/cytomelodics/files/CANTARE/ . CONCLUSION: CANTARE offers a flexible approach for building parsimonious, interpretable multi-omic models. These models yield quantitative and directional effect sizes for predictors and support the generation of hypotheses for follow-up investigation.


Asunto(s)
Microbioma Gastrointestinal , Humanos , Metabolómica , Análisis de Regresión , Programas Informáticos , Biología de Sistemas
12.
Curr Opin Microbiol ; 56: 59-66, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32663769

RESUMEN

The complex communities of microbes that constitute the human microbiome are influenced by host and environmental factors. Here, we address how a fundamental aspect of human biology, blood type, contributes to shaping this microscopic ecosystem. Although this question remains largely unexplored, we glean insights from decades of work describing relationships between pathogens and blood type. The bacterial strategies, molecular mechanisms, and host responses that shaped those relationships may parallel those that characterize how blood type and commensals interact. Understanding these nuanced interactions will expand our capacity to analyze and manipulate the human microbiome.


Asunto(s)
Bacterias/aislamiento & purificación , Infecciones Bacterianas/genética , Antígenos de Grupos Sanguíneos/genética , Microbiota , Simbiosis , Animales , Bacterias/clasificación , Bacterias/genética , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/microbiología , Fenómenos Fisiológicos Bacterianos , Antígenos de Grupos Sanguíneos/inmunología , Humanos
13.
Microbiome ; 8(1): 50, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32252810

RESUMEN

Following publication of the original article [1], the authors reported an error in Fig. 2. The original Fig. 2 has been incorrectly replaced with the Supplementary Fig. 2. The correct Fig. 2 is presented here.

14.
ISME J ; 14(6): 1359-1368, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32076128

RESUMEN

Understanding when and why new species are recruited into microbial communities is a formidable problem with implications for managing microbial systems, for instance by helping us better understand whether a probiotic or pathogen would be expected to colonize a human microbiome. Much theory in microbial temporal dynamics is focused on how phylogenetic relationships between microbes impact the order in which those microbes are recruited; for example, species that are closely related may competitively exclude each other. However, several recent human microbiome studies have observed closely related bacteria being recruited into microbial communities in short succession, suggesting that microbial community assembly is historically contingent, but competitive exclusion of close relatives may not be important. To address this, we developed a mathematical model that describes the order in which new species are detected in microbial communities over time within a phylogenetic framework. We use our model to test three hypothetical assembly modes: underdispersion (species recruitment is more likely if a close relative was previously detected), overdispersion (recruitment is more likely if a close relative has not been previously detected), and the neutral model (recruitment likelihood is not related to phylogenetic relationships among species). We applied our model to longitudinal human microbiome data, and found that for the individuals we analyzed, the human microbiome generally follows the underdispersion (i.e., nepotism) hypothesis. Exceptions were oral communities and the fecal communities of two infants that had undergone heavy antibiotic treatment. None of the datasets we analyzed showed statistically significant phylogenetic overdispersion.


Asunto(s)
Bacterias/genética , Microbiota , Filogenia , Bacterias/clasificación , Bacterias/aislamiento & purificación , Heces/microbiología , Femenino , Microbioma Gastrointestinal , Humanos , Lactante , Recién Nacido , Masculino
15.
Gut Microbes ; 11(3): 610-619, 2020 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-32036739

RESUMEN

Gaining a complete understanding of transmission risk factors will assist in efforts to reduce new HIV infections, especially within the disproportionally affected population of men who have sex with men (MSM). We recently reported that the fecal microbiota of MSM elevates immune activation in gnotobiotic mice and enhances HIV infection in vitro over that of fecal microbiota from men who have sex with women. We also demonstrated elevation of the gut homing marker CD103 (integrin αE) on CD4+ T cells by MSM-microbiota. Here we provide additional evidence that the gut microbiota is a risk factor for HIV transmission in MSM by showing elevated frequencies of the HIV co-receptor CCR5 on CD4+ T cells in human rectosigmoid colon biopsies. We discuss our interest in specific MSM-associated bacteria and propose the influx of CD103+ and CCR5+ CD4+ T cells into the colon as a potential link between the MSM microbiota and HIV transmission.


Asunto(s)
Microbioma Gastrointestinal , Infecciones por VIH/microbiología , Infecciones por VIH/transmisión , Minorías Sexuales y de Género , Linfocitopenia-T Idiopática CD4-Positiva/inmunología , Adolescente , Adulto , Antígenos CD/inmunología , Biopsia , Colon/inmunología , Colon/microbiología , Femenino , Infecciones por VIH/inmunología , Humanos , Cadenas alfa de Integrinas/inmunología , Masculino , Persona de Mediana Edad , Receptores CCR5/inmunología , Factores de Riesgo , Conducta Sexual , Linfocitopenia-T Idiopática CD4-Positiva/microbiología , Adulto Joven
16.
Artículo en Inglés | MEDLINE | ID: mdl-31685472

RESUMEN

CRS3123 is a novel small molecule that potently inhibits methionyl-tRNA synthetase of Clostridioides difficile, inhibiting C. difficile toxin production and spore formation. CRS3123 has been evaluated in a multiple-ascending-dose placebo-controlled phase 1 trial. Thirty healthy subjects, ages 18 to 45 years, were randomized into three cohorts of 10 subjects each, receiving either 200, 400, or 600 mg of CRS3123 (8 subjects per cohort) or placebo (2 subjects per cohort) by oral administration twice daily for 10 days. CRS3123 was generally safe and well tolerated, with no serious adverse events (SAEs) or severe treatment-emergent adverse events (TEAEs) reported. All subjects completed their assigned treatment and follow-up visits, and there were no trends in systemic, vital sign, or laboratory TEAEs. There were no QTcF interval changes or any clinically significant changes in other electrocardiogram (ECG) intervals or morphology. CRS3123 showed limited but detectable systemic uptake; although absorption increased with increasing dose, the increase was less than dose proportional. Importantly, the bulk of the oral dose was not absorbed, and fecal concentrations were substantially above the MIC90 value of 1 µg/ml at all dosages tested. Subjects receiving either of the two lower doses of CRS3123 exhibited minimal disruption of normal gut microbiota after 10 days of twice-daily dosing. CRS3123 was inactive against important commensal anaerobes, including Bacteroides, bifidobacteria, and commensal clostridia. Microbiome data showed favorable differentiation compared to other CDI therapeutics. These results support further development of CRS3123 as an oral agent for the treatment of CDI. (This study has been registered at Clinicaltrials.gov under identifier NCT02106338.).


Asunto(s)
Antibacterianos/administración & dosificación , Benzopiranos/administración & dosificación , Clostridioides difficile/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Tiofenos/administración & dosificación , Administración Oral , Adolescente , Adulto , Antibacterianos/efectos adversos , Antibacterianos/farmacocinética , Benzopiranos/efectos adversos , Benzopiranos/farmacocinética , Clostridioides difficile/enzimología , Clostridioides difficile/genética , Infecciones por Clostridium/tratamiento farmacológico , Estudios de Cohortes , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Esquema de Medicación , Electrocardiografía , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/efectos adversos , Inhibidores Enzimáticos/farmacocinética , Femenino , Voluntarios Sanos , Humanos , Masculino , Metionina-ARNt Ligasa/antagonistas & inhibidores , Metionina-ARNt Ligasa/genética , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Tiofenos/efectos adversos , Tiofenos/farmacocinética , Adulto Joven
17.
BMC Bioinformatics ; 20(1): 432, 2019 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-31429723

RESUMEN

BACKGROUND: Relationships between specific microbes and proper immune system development, composition, and function have been reported in a number of studies. However, researchers have discovered only a fraction of the likely relationships. "Omic" methodologies such as 16S ribosomal RNA (rRNA) sequencing and time-of-flight mass cytometry (CyTOF) immunophenotyping generate data that support generation of hypotheses, with the potential to identify additional relationships at a level of granularity ripe for further experimentation. Pairwise linear regressions between microbial and host immune features provide one approach for quantifying relationships between "omes", and the differences in these relationships across study cohorts or arms. This approach yields a top table of candidate results. However, the top table alone lacks the detail that domain experts such as microbiologists and immunologists need to vet candidate results for follow-up experiments. RESULTS: To support this vetting, we developed VOLARE (Visualization Of LineAr Regression Elements), a web application that integrates a searchable top table, small in-line graphs illustrating the fitted models, a network summarizing the top table, and on-demand detailed regression plots showing full sample-level detail. We applied VOLARE to three case studies-microbiome:cytokine data from fecal samples in human immunodeficiency virus (HIV), microbiome:cytokine data in inflammatory bowel disease and spondyloarthritis, and microbiome:immune cell data from gut biopsies in HIV. We present both patient-specific phenomena and relationships that differ by disease state. We also analyzed interaction data from system logs to characterize usage scenarios. This log analysis revealed that users frequently generated detailed regression plots, suggesting that this detail aids the vetting of results. CONCLUSIONS: Systematically integrating microbe:immune cell readouts through pairwise linear regressions and presenting the top table in an interactive environment supports the vetting of results for scientific relevance. VOLARE allows domain experts to control the analysis of their results, screening dozens of candidate relationships with ease. This interactive environment transcends the limitations of a static top table.


Asunto(s)
Enfermedad , Sistema Inmunológico/metabolismo , Microbiota , Programas Informáticos , Bacteroides/metabolismo , Estudios de Cohortes , Citocinas/metabolismo , Infecciones por VIH/inmunología , Infecciones por VIH/microbiología , Humanos , Enfermedades Inflamatorias del Intestino/microbiología , Espondiloartritis/microbiología
18.
NPJ Biofilms Microbiomes ; 5(1): 18, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31285833

RESUMEN

Obesity is a disease with a complex etiology and variable prevalence across different populations. While several studies have reported gut microbiota composition differences associated with obesity in humans, there has been a lack of consistency in the nature of the reported changes; it has been difficult to determine whether methodological differences between studies, underlying differences in the populations studied, or other factors are responsible for this discordance. Here we use 16 S rRNA data from previously published studies to explore how the gut microbiota-obesity relationship varies across heterogeneous Western populations, focusing mainly on the relationship between (1) alpha diversity and (2) Prevotella relative abundance with BMI. We provide evidence that the relationship between lower alpha diversity and higher BMI may be most consistent in non-Hispanic white (NHW) populations and/or those with high socioeconomic status, while the relationship between higher Prevotella relative abundance and BMI may be stronger among black and Hispanic populations. We further examine how diet may impact these relationships. This work suggests that gut microbiota phenotypes of obesity may differ with race/ethnicity or its correlates, such as dietary components or socioeconomic status. However, microbiome cohorts are often too small to study complex interaction effects and non-white individuals are greatly underrepresented, creating substantial challenges to understanding population-level patterns in the microbiome-obesity relationship. Further study of how population heterogeneity influences the relationship between the gut microbiota and obesity is warranted.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Obesidad/fisiopatología , Índice de Masa Corporal , Etnicidad , Humanos , Fenotipo , Mundo Occidental
19.
PLoS Pathog ; 15(4): e1007611, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30947289

RESUMEN

Men who have sex with men (MSM) have differences in immune activation and gut microbiome composition compared with men who have sex with women (MSW), even in the absence of HIV infection. Gut microbiome differences associated with HIV itself when controlling for MSM, as assessed by 16S rRNA sequencing, are relatively subtle. Understanding whether gut microbiome composition impacts immune activation in HIV-negative and HIV-positive MSM has important implications since immune activation has been associated with HIV acquisition risk and disease progression. To investigate the effects of MSM and HIV-associated gut microbiota on immune activation, we transplanted feces from HIV-negative MSW, HIV-negative MSM, and HIV-positive untreated MSM to gnotobiotic mice. Following transplant, 16S rRNA gene sequencing determined that the microbiomes of MSM and MSW maintained distinct compositions in mice and that specific microbial differences between MSM and MSW were replicated. Immunologically, HIV-negative MSM donors had higher frequencies of blood CD38+ HLADR+ and CD103+ T cells and their fecal recipients had higher frequencies of gut CD69+ and CD103+ T cells, compared with HIV-negative MSW donors and recipients, respectively. Significant microbiome differences were not detected between HIV-negative and HIV-positive MSM in this small donor cohort, and immune differences between their recipients were trending but not statistically significant. A larger donor cohort may therefore be needed to detect immune-modulating microbes associated with HIV. To investigate whether our findings in mice could have implications for HIV replication, we infected primary human lamina propria cells stimulated with isolated fecal microbiota, and found that microbiota from MSM stimulated higher frequencies of HIV-infected cells than microbiota from MSW. Finally, we identified several microbes that correlated with immune readouts in both fecal recipients and donors, and with in vitro HIV infection, which suggests a role for gut microbiota in immune activation and potentially HIV acquisition in MSM.


Asunto(s)
Microbioma Gastrointestinal/inmunología , Vida Libre de Gérmenes/inmunología , Infecciones por VIH/inmunología , VIH/inmunología , Homosexualidad Masculina , Adolescente , Adulto , Anciano , Animales , Estudios de Cohortes , ADN Bacteriano/genética , Heces/microbiología , Femenino , VIH/genética , Infecciones por VIH/microbiología , Infecciones por VIH/virología , Humanos , Técnicas In Vitro , Masculino , Ratones , Persona de Mediana Edad , ARN Ribosómico 16S/genética , Conducta Sexual , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...