Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 799: 149405, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34365266

RESUMEN

Monitoring the genetic signal of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) through RNA titers in wastewater has emerged as a promising strategy for tracking community-scale prevalence of coronavirus disease 2019 (COVID-19). Although many studies of SARS-CoV-2 in wastewater have been conducted around the world, a uniform procedure for concentrating the virus in wastewater is lacking. The goal of this study was to comprehensively evaluate how different methods for concentrating the suspended solids in wastewater affect the associated SARS-CoV-2 RNA signal and the time required for processing samples for wastewater-based epidemiology efforts. We additionally consider the effects of sampling location in the wastewater treatment train (i.e., following preliminary or primary treatment), pasteurization, and RNA extraction method. Comparison of the liquid phase to suspended solids obtained via centrifugation or vacuum filtration suggests that the RNA signal of SARS-CoV-2 preferentially occurs in the solids. Therefore, we assert that the recovery of SARS-CoV-2 from wastewater should focus on suspended solids. Our data indicate that the measured SARS-CoV-2 signal is higher among samples taken from the primary clarifier effluent, as opposed to those taken after preliminary treatment. Additionally, we provide evidence that sample pasteurization at 60 °C for 90 min reduces the SARS-CoV-2 signal by approximately 50-55%. Finally, the results indicate that a magnetic bead approach to RNA extraction leads to a higher SARS-CoV-2 signal than does a silica membrane approach.


Asunto(s)
COVID-19 , Virus , Humanos , ARN Viral , SARS-CoV-2 , Aguas Residuales
2.
Mol Microbiol ; 76(2): 467-79, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20345657

RESUMEN

Numerous small RNAs regulators of gene expression exist in bacteria. A large class of them binds to the RNA chaperone Hfq and act by base pairing interactions with their target mRNA, thereby affecting their translation and/or stability. They often have multiple direct targets, some of which may be regulators themselves, and production of a single sRNA can therefore affect the expression of dozens of genes. We show in this study that the synthesis of the Escherichia coli pleiotropic PhoPQ two-component system is repressed by MicA, a sigma(E)-dependent sRNA regulator of porin biogenesis. MicA directly pairs with phoPQ mRNA in the translation initiation region of phoP and presumably inhibits translation by competing with ribosome binding. Consequently, MicA downregulates several members of the PhoPQ regulon. By linking PhoPQ to sigma(E), our findings suggest that major cellular processes such as Mg(2+) transport, virulence, LPS modification or resistance to antimicrobial peptides are modulated in response to envelope stress. In addition, we found that Hfq strongly affects the expression of phoP independently of MicA, raising the possibility that even more sRNAs, which remain to be identified, could regulate PhoPQ synthesis.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Membrana Celular/metabolismo , Pared Celular/metabolismo , Proteínas de Escherichia coli/biosíntesis , Regulación Bacteriana de la Expresión Génica , MicroARNs/metabolismo , Estrés Fisiológico , Proteínas Bacterianas/antagonistas & inhibidores , Escherichia coli/fisiología , Proteínas de Escherichia coli/antagonistas & inhibidores , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Regulón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...