Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Oncol ; 2022: 8035083, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36052282

RESUMEN

Background: Circular RNAs (circRNAs) regulate complex functional processes and play crucial roles in cancer development and progression. It was reported that circKIF4 regulates the progression of triple-negative breast cancer (TNBC). This study evaluates the role of circKIF4 in breast cancer distant metastasis and metabolic reprogramming. Methods: RT-qPCR was performed to verify the expression of circKIF4A in breast cancer, liver metastatic tissues, and cell lines. The function of circKIF4A in metastasis was evaluated both in vitro and in vivo through a series of experiments, including cell migration and glucose intake experiments. Additionally, we conducted molecular experiments to clarify the regulatory role of circKIF4A. We then conducted a Luciferase reporter assay and an RNA immunoprecipitation assay to identify the molecular interactions between circKIF4A and miRNA. Results: circKIF4A was overexpressed in breast cancer cell lines and tissues, inhibiting its expression and suppressing breast cancer growth and metastasis. Interestingly, we observed that circKIF4A reprogrammed the glucose metabolism of breast cancer, and silencing circKIF4A greatly affected glucose uptake and lactate production in breast cancer cells. miR-335 can be sponged by circKIF4A, which affected the expression of ALDOA/OCT4 protein and regulated HK2/PKM2 expression. Conclusions: This study demonstrated that the circKIF4A-miR-335-OCT4/ALDOA-HK2/PKM2 axis is critical to breast cancer metabolic reprogramming, indicating that this axis could be a novel therapeutic target for the treatment of liver metastasis of breast cancer.

2.
Int J Mol Med ; 50(1)2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35593308

RESUMEN

Ischemic injuries result from ischemia and hypoxia in cells. Tissues and organs receive an insufficient supply of nutrients and accumulate metabolic waste, which leads to the development of inflammation, fibrosis and a series of other issues. Ischemic injuries in the brain, heart, kidneys, lungs and other organs can cause severe adverse effects. Acute renal ischemia induces acute renal failure, heart ischemia induces myocardial infarction and cerebral ischemia induces cerebrovascular accidents, leading to loss of movement, consciousness and possibly, life­threatening disabilities. Existing evidence suggests that long non­coding RNAs (lncRNAs) are regulatory sequences involved in transcription, post­transcription, epigenetic regulation and multiple physiological processes. lncRNAs have been shown to be differentially expressed following ischemic injury, with the severity of the ischemic injury being affected by the upregulation or downregulation of certain types of lncRNA. The present review article provides an extensive summary of the functional roles of lncRNAs in ischemic injury, with a focus on the brain, heart, kidneys and lungs. The present review mainly summarizes the functional roles of lncRNA MALAT1, lncRNA MEG3, lncRNA H19, lncRNA TUG1, lncRNA NEAT1, lncRNA AK139328 and lncRNA CAREL, among which lncRNA MALAT1, in particular, plays a crucial role in ischemic injury and is currently a hot research topic.


Asunto(s)
Isquemia Encefálica , ARN Largo no Codificante , Accidente Cerebrovascular , Isquemia Encefálica/genética , Epigénesis Genética , Humanos , Isquemia , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Accidente Cerebrovascular/genética
3.
Apoptosis ; 27(5-6): 297-310, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35312885

RESUMEN

Cancer resistance to therapy is a big issue in cancer therapy. Tumours may develop some mechanisms to reduce the induction of cell death, thus stimulating tumour growth. Cancer cells may show a low expression and activity of tumour suppressor genes and a low response to anti-tumour immunity. These mutations can increase the resistance of cancer cells to programmed cell death mechanisms such as apoptosis, ferroptosis, pyroptosis, autophagic cell death, and some others. The upregulation of some mediators and transcription factors such as Akt, nuclear factor of κB, signal transducer and activator of transcription 3, Bcl-2, and others can inhibit cell death in cancer cells. Using adjuvants to induce the killing of cancer cells is an interesting strategy in cancer therapy. Nobiletin (NOB) is a herbal-derived agent with fascinating anti-cancer properties. It has been shown to induce the generation of endogenous ROS by cancer cells, leading to damage to critical macromolecules and finally cell death. NOB may induce the activity of p53 and pro-apoptosis mediators, and also inhibit the expression and nuclear translocation of anti-apoptosis mediators. In addition, NOB may induce cancer cell killing by modulating other mechanisms that are involved in programmed cell death mechanisms. This review aims to discuss the cellular and molecular mechanisms of the programmed cell death in cancer by NOB via modulating different types of cell death in cancer.


Asunto(s)
Ferroptosis , Flavonas , Neoplasias , Apoptosis , Flavonas/farmacología , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética
4.
J Healthc Eng ; 2021: 2031407, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34956559

RESUMEN

The aim of this study was to explore the specific role of miR-29c-3p in Alzheimer's disease (AD). Animal models of AD were established by injecting streptozotocin (STZ) into mice through the lateral ventricle, while cell models of AD were induced by 10 µM ß-amyloid (Aß). We detected miR-29c-3p and ß-site amyloid precursor protein cleaving enzyme 1 (BACE1) contents and measured AD cell proliferation and apoptosis. A low miR-29c-3p level and a high BACE1 level were detected in the brain tissue of AD animal models and AD cell models. Aß-processed cells had markedly lower proliferation activity, higher apoptosis, increased phosphorylation of tau protein was over phosphorylated, but the overexpression of miR-29c-3p or the silencing of BACE1 significantly enhanced the cell proliferation activity and reduced cell apoptosis by regulating the contents of related proteins. Inhibition of miR-29c-3p or overexpression of BACE1 aggravated Aß-induced side effects. We used Targetscan7.2 to predict the downstream target genes of miR-29c-3p. Then, we detected that there were target binding sites between miR-29c-3p and BACE1. The rescue experiment identified BACE1 as a functional target for miR-29c-3p. AD leads to decreased miR-29c-3p level and increased BACE1 level. MiR-29c-3p has specific binding sites with the 3'-untranslated region (3'-UTR) of BACE1 and thus negatively regulates the BACE1 level, thereby affecting the progression of AD.


Asunto(s)
Enfermedad de Alzheimer , Secretasas de la Proteína Precursora del Amiloide , Ácido Aspártico Endopeptidasas , MicroARNs , Enfermedad de Alzheimer/genética , Secretasas de la Proteína Precursora del Amiloide/genética , Péptidos beta-Amiloides , Animales , Ácido Aspártico Endopeptidasas/genética , Ratones , MicroARNs/genética
5.
Contrast Media Mol Imaging ; 2021: 6010362, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34992508

RESUMEN

Alzheimer's disease (AD) is a progressive neurological degenerative illness with a hidden onset. Its pathogenesis is complicated, although with molecular biology research on cancer and targeted research on pathogenic mechanisms, good progress has not yet been made. Therefore, this work built a multifactor-driven neuronal apoptosis dysfunction module for the purpose of probing its underlying pathogenic mechanisms. We performed differential expression analysis, coexpression analysis, enrichment analysis, and hypergeometric tests to calculate the underlying regulatory effects of multifactors on the modules by the way of the whole gene expression profile of AD and identify a series of ncRNA (miR-320a) and TF (NFKB1). Additionally, we screened 10 modules corresponding to the Hub gene, which tend to regulate the physiological progress of inflammation, regulation of autophagy, cerebral cortex neuron differentiation, glial cell apoptotic, and so on. Meanwhile, Alzheimer's disease is triggered by signaling pathways such as the MPK signaling pathway. In this study, a dysfunction module is utilized to verify that miR-590-3 and SP1 motility factors can regulate neurons in Alzheimer's disease through the MPK signaling pathway, not only providing new insights into the pathogenesis of Alzheimer's disease but also laying a solid theoretical foundation for the biologists to further cure Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , MicroARNs , Proteínas Quinasas Activadas por AMP/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Apoptosis/genética , Humanos , MicroARNs/genética , Transducción de Señal/genética , Factor de Transcripción Sp1/metabolismo
6.
Exp Ther Med ; 16(2): 1426-1432, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30116391

RESUMEN

The aim of the present study was to investigate the effect of propofol on immunoglobulin (Ig)E-activated mast cell degranulation and explore the underlying mechanisms responsible. RBL-2H3 cells were treated with propofol for at a variety of concentrations and different amounts of time. Cell viability was assessed using an MTT assay and microRNA (miR)-221 expression was quantified using reverse transcription-quantitative polymerase chain reaction. RBL-2H3 cells were transfected with miR-221 mimic or a negative control and degranulation, including the release of ß-hexosaminidase and histamine, was evaluated using an ELISA kit. The effect of miR-221 overexpression on the phosphorylation of protein kinase B (Akt) was detected using western blotting and extracellular Ca2+ influx was measured via afura-2 assay. The phosphoinositide 3-kinase(PI3K) inhibitor LY294002 was used to investigate the association between PI3K/Akt signaling and Ca2+ influx in the presence of propofol. The results demonstrated that propofol treatment suppressed RBL-2H3 cell proliferation in a dose- and time-dependent manner. Propofol inhibited miR-221 expression in a dose-dependent manner compared with the control group; however, the inhibitive effect was significantly abrogated following transfection with miR-221 mimics. Furthermore, ß-hexosaminidase and histamine release, PI3K/Akt signaling and Ca2+ influx were decreased following propofol application. miR-221 overexpression markedly ameliorated the suppressive effect of propofol. Treatment with LY294002 reversed the propofol-induced decrement of Ca2+ influx on IgE-mediated RBL-2H3 cells, suggesting an association between PI3K/Akt signaling and Ca2+ influx. In conclusion, the results of the present study suggest that propofol treatment attenuates mast cell degranulation via inhibiting the miR-221/PI3K/Akt/Ca2+ pathway. These results indicate that propofol may have a potential therapeutic effect as a treatment for allergic diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA