Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 20965, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251612

RESUMEN

Single-layer isophorone diisocyanate (IPDI) are one of the most popular self-healing microcapsules but suffers from low shell strength, poor heat resistance, stability and aging properties. In this paper, IPDI microcapsules were encapsulated into double-layer phenolic (PF)/polyurethane (PU) by a two-step process involving interfacial polymerization and in-situ polymerization. The prepared microcapsule composites were comprehensively characterized for their physical and chemical properties using optical microanalysis, scanning electron microscope, Fourier transform infrared spectroscopy, thermal gravimetric analysis and depth-sensing indentation analysis. Compared with the single-layer PU-IPDI microcapsule counterpart, the mechanical performance, thermal resistance, aging property and environmental stability of double-layer PF/PU-IPDI microcapsules were significantly improved. The epoxy coating was enhanced with the incorporation of 10 wt.% PF/PU-IPDI microcapsules, whose self-healing performance was evaluated by scratch corrosion test. The results demonstrated successful repair of coating scratches, along with the absence of corrosion on the coated steel substrate soaked in a 10 wt.% NaCl solution for 7 days. By comparing the tensile strength of epoxy coating before and after crack formation, it could be found that the self-healing efficiency was 57.9% when loaded with 10 wt.% of PF/PU-IPDI microcapsules in coating. This study highlights that the rational design of double-layer microcapsules integrated into the epoxy coating matrix could provide excellent anti-corrosion and self-healing properties.

2.
Chem Biol Interact ; 402: 111184, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39103028

RESUMEN

Selenium supplements are beneficial to human health, however, concerns regarding the toxicity of inorganic selenium have stimulated research on safer organic compounds. The main objective of this study was to develop a novel glucosamine-selenium compound (Se-GlcN), clarify its structure, and subsequently investigate its oral toxicity and in vitro anti-hepatitis B virus (HBV) activity. Electron microscopy, infrared, ultraviolet spectroscopy, nuclear magnetic resonance and thermogravimetric analyses revealed a unique binding mode of Se-GlcN, with the introduction of the Se-O bond at the C6 position, resulting in the formation of two carboxyl groups. In acute toxicity studies, the median lethal dose (LD50) of Se-GlcN in ICR mice was 92.31 mg/kg body weight (BW), with a 95 % confidence interval of 81.88-104.07 mg/kg BW. A 30-day subchronic toxicity study showed that 46.16 mg/kg BW Se-GlcN caused livers and kidneys damage in mice, whereas doses of 9.23 mg/kg BW and lower were safe for the livers and kidneys. In vitro studies, Se-GlcN at 1.25 µg/mL exhibited good anti-HBV activity, significantly reducing HBsAg, HBeAg, 3.5 kb HBV RNA and total HBV RNA by 45 %, 54 %, 84 %, 87 %, respectively. In conclusion, the Se-GlcN synthesized in this study provides potential possibilities and theoretical references for its use as an organic selenium supplement.


Asunto(s)
Antivirales , Glucosamina , Virus de la Hepatitis B , Ratones Endogámicos ICR , Animales , Virus de la Hepatitis B/efectos de los fármacos , Glucosamina/química , Glucosamina/farmacología , Ratones , Antivirales/farmacología , Antivirales/síntesis química , Antivirales/química , Antivirales/toxicidad , Administración Oral , Masculino , Selenio/química , Selenio/farmacología , Hígado/efectos de los fármacos , Hígado/patología , Humanos , Femenino , Riñón/efectos de los fármacos , Riñón/patología , Células Hep G2 , Antígenos de Superficie de la Hepatitis B/metabolismo
3.
Bioact Mater ; 37: 222-238, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38549772

RESUMEN

The synchronized development of mineralized bone and blood vessels is a fundamental requirement for successful bone tissue regeneration. Adequate energy production forms the cornerstone supporting new bone formation. ETS variant 2 (ETV2) has been identified as a transcription factor that promotes energy metabolism reprogramming and facilitates the coordination between osteogenesis and angiogenesis. In vitro molecular experiments have demonstrated that ETV2 enhances osteogenic differentiation of dental pulp stem cells (DPSCs) by regulating the ETV2- prolyl hydroxylase 2 (PHD2)- hypoxia-inducible factor-1α (HIF-1α)- vascular endothelial growth factor A (VEGFA) axis. Notably, ETV2 achieves the rapid reprogramming of energy metabolism by simultaneously accelerating mitochondrial aerobic respiration and glycolysis, thus fulfilling the energy requirements essential to expedite osteogenic differentiation. Furthermore, decreased α-ketoglutarate release from ETV2-modified DPSCs contributes to microcirculation reconstruction. Additionally, we engineered hydroxyapatite/chitosan microspheres (HA/CS MS) with biomimetic nanostructures to facilitate multiple ETV2-DPSC functions and further enhanced the osteogenic differentiation. Animal experiments have validated the synergistic effect of ETV2-modified DPSCs and HA/CS MS in promoting the critical-size bone defect regeneration. In summary, this study offers a novel treatment approach for vascularized bone tissue regeneration that relies on energy metabolism activation and the maintenance of a stable local hypoxia signaling state.

4.
Artículo en Inglés | MEDLINE | ID: mdl-37756376

RESUMEN

Extensive bone fractures, which can seriously impact both health and quality of life, cannot easily heal naturally, especially if the patient has an underlying medical condition or is aging. The most promising approach to addressing such fractures is bone regeneration through bone tissue engineering. Bone regeneration is a complex process that consists of three distinct phases: inflammation, repair, and remodeling. Macrophages play a bridging role between the various cells involved in each stage of bone regeneration, interacting with different microenvironments and advancing the bone healing process. Although the origin and function of macrophages have been extensively studied, the mechanisms underlying their interaction with the bone healing microenvironment remain unexplored, including the association of microenvironmental changes with macrophage reprogramming and the role of macrophages in cells in the microenvironment. This review summarizes the bone regeneration process and recent advances in research on interactions between macrophages and the bone healing microenvironment and discusses novel biological strategies to promote bone regeneration by modulating macrophages for the treatment of bone injury and loss.

5.
Environ Sci Pollut Res Int ; 30(12): 33287-33297, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36474041

RESUMEN

As an important way for China to integrate into the international circulation, foreign direct investment (FDI) can not only increase China's capital accumulation but also directly affect inclusive green growth by promoting the diffusion and transfer of green technologies and activating the domestic market. Based on China's provincial panel data from 2007 to 2019, this paper discusses the following issues: first, Global Malmquist-Luenberger (GML) productivity index is used to measure and analyze the current situation of inclusive green growth in 30 provinces of China; second, we set a fixed effect panel model to test the relationship between FDI and inclusive green growth in China. Third, based on PVAR (panel vector autoregressive) model, the dynamic impacts of FDI and new urbanization on inclusive green growth are tested. Finally, a regression model with the new urbanization level as the threshold variable is constructed to test the threshold effect of FDI on China's green inclusive growth. Accordingly, each region needs to formulate FDI introduction policies according to the local new urbanization level, so as to give full play to the positive role of FDI in inclusive green growth.


Asunto(s)
Tecnología , Urbanización , China , Eficiencia , Inversiones en Salud , Desarrollo Económico
6.
Medicine (Baltimore) ; 101(30): e29294, 2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35905214

RESUMEN

BACKGROUND: The SET-CAN/NUP214 fusion gene resulting from chromosomal del(9)(q34.11q34.13) or t(9;9) (q34;q34) has been found in T-cell acute lymphoblastic leukemia (T-ALL), B-cell acute lymphoblastic leukemia (B-ALL), acute myeloid leukemia (AML) and myeloid sarcoma (MS). Furthermore, the SET-CAN/NUP214 fusion gene has been found in the T-ALL cell line LOUCY and the AML line MEGAL. The common features of these cases are insensitivity to chemotherapy and poor prognosis. We reviewed the characteristics and prognostic significance of the SET-CAN/NUP214 fusion gene in hematological malignancies. METHODS: This systematic literature search was conducted using the PubMed, Web of Science, Embase, and Cochrane Library databases. With the inclusion and exclusion criteria, we summarized all of the papers and performed a statistical analyses. RESULTS: In general, the SET-CAN/NUP214 fusion gene is very rare in adult acute leukemia, more frequently found in T-ALL than in other types of leukemia, and more often in males. Flow cytometry data indicated that the markers CD34, CD33, CD13, and CD7 were common in SET-CAN/NUP214 positive acute leukemia, including ALL. Fluorescence in situ hybridization and arrays are important methods for detecting the fusion gene in newly diagnosed patients and can detect chromosomal del(9)(q34) will be detected. The chromosomal karyotype may be normal or complex, and, in terms of survival analysis, transplantation results in a better prognosis than chemotherapy alone. CONCLUSIONS AND IMPLICATIONS OF KEY FINDINGS: The presence of SET-CAN/NUP214 fusion gene may be a Minimal Residual Disease of early recurrence, and it might be a poor indicator of outcome. LIMITATIONS: The mechanism, clinical characteristics, therapy and prognosis of the SET-CAN/NUP214 fusion gene in hematological malignancies require further research.


Asunto(s)
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Proteínas de Fusión Oncogénica/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Adulto , Proteínas de Unión al ADN/genética , Neoplasias Hematológicas/genética , Chaperonas de Histonas/genética , Humanos , Hibridación Fluorescente in Situ , Leucemia Mieloide Aguda/genética , Masculino , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Fusión Oncogénica/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Pronóstico , Factores de Transcripción/genética
7.
Environ Sci Pollut Res Int ; 29(27): 41151-41167, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35088269

RESUMEN

Acrylamide (ACR) is a typical environmental contaminant, presenting potential health hazards that have been attracting increasing attention. Its neurotoxicity is known to cause significant damage to health. However, the mechanisms of ACR-induced neurotoxicity require further clarification. This study uses a mouse model to explore how ACR-induced oxidative stress, neuronal lesions, neurotransmission impairment, and neuroinflammation mutually contribute to neurotoxicity. A distinct increase in the cellular reactive oxygen species (ROS) levels, malondialdehyde (MDA), and 8-hydroxy-2-deoxyguanosine (8-OHdG) content and a significant decrease in the glutathione (GSH) content after ACR exposure were indicative of oxidative stress. Moreover, ACR caused neurological defects associated with gait abnormality and neuronal loss while suppressing the acetylcholine (ACh) and dopamine (DA) levels and increasing the protein expression of α-synuclein (α-syn), further inhibiting cholinergic and dopaminergic neuronal function. Additionally, ACR treatment caused an inflammatory response via nuclear factor-kappa B (NF-κB) activation and increased the protein expression of NOD-like receptor protein-3 (NLRP3), consequently activating the NLRP3 inflammasome constituents, including cysteinyl aspartate specific proteinase 1 (Caspase-1), apoptosis-associated speck-like protein containing CARD (ASC), N domain gasdermin D (N-GSDMD), interleukin-1ß (IL-1ß), and IL-18. The results revealed the underlying molecular mechanism of ACR-induced neurotoxicity via oxidative stress, neurotransmission impairment, and neuroinflammation-related signal cascade. This information will further improve the development of an alternative pathway strategy for investigating the risk posed by ACR. The hypothetical mechanism of ACR-induced neurotoxicity in vivo.


Asunto(s)
Acrilamida , Síndromes de Neurotoxicidad , Acrilamida/toxicidad , Animales , Glutatión/metabolismo , Ratones , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedades Neuroinflamatorias , Síndromes de Neurotoxicidad/metabolismo , Estrés Oxidativo/fisiología , Transmisión Sináptica
8.
Front Oncol ; 12: 1063689, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36620579

RESUMEN

Background and aim: Given the paucity of evidence-based treatment recommendations, the most appropriate first-line regimen for adult Burkitt lymphoma is currently undefined. We aimed to identify the optimal treatment regimen containing rituximab for adult Burkitt lymphoma patients. Methods: The PubMed, Embase, Web of Science, and Cochrane databases were searched in December 2021 (10). We included all studies for the treatment of Burkitt lymphoma including rituximab. We excluded studies of patients aged ≤14 years old and those with sample numbers ≤10 patients. Random-effects models were used to compare different chemotherapy regimens regarding estimated 2-year overall survival (OS) rate, 2-year progression-free survival (PFS) rate, and overall response rate (ORR). Results: A total of 17 studies were included in this meta-analysis and divided into four groups: CODOX-M/IVAC, DA-EPOCH, GMALL-B-ALL/NHL2002, and Hyper-CVAD. DA-EPOCH was associated with a significantly higher 2-year OS rate [0.95, 95% confidence interval (CI) 0.86-1.00]. There was no significant difference in the 2-year PFS rates (0.81, 95% CI 0.76-0.85) and ORR (0.90, 95% CI 0.87-0.94) between these four treatment regimens. Conclusions: The meta-analysis indicates that DA-EPOCH could be more effective in providing curative treatment for adult Burkitt lymphoma patients, especially without CNS and BM involvement considering OS time. Due to the types of studies and the limited number of included studies, bias should be acknowledged and a randomized controlled trial (RCT) needs to be performed to further identify the optimal treatment regimen for such patients.

9.
Front Immunol ; 12: 763334, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34950140

RESUMEN

Periodontitis (PD) is a common chronic infectious disease. The local inflammatory response in the host may cause the destruction of supporting periodontal tissue. Macrophages play a variety of roles in PD, including regulatory and phagocytosis. Moreover, under the induction of different factors, macrophages polarize and form different functional phenotypes. Among them, M1-type macrophages with proinflammatory functions and M2-type macrophages with anti-inflammatory functions are the most representative, and both of them can regulate the tendency of the immune system to exert proinflammatory or anti-inflammatory functions. M1 and M2 macrophages are involved in the destructive and reparative stages of PD. Due to the complex microenvironment of PD, the dynamic development of PD, and various local mediators, increasing attention has been given to the study of macrophage polarization in PD. This review summarizes the role of macrophage polarization in the development of PD and its research progress.


Asunto(s)
Macrófagos/fisiología , Periodontitis/inmunología , Animales , Polaridad Celular , Citocinas/fisiología , Humanos , Quinasas Janus/fisiología , FN-kappa B/fisiología , Periodontitis/tratamiento farmacológico , Periodontitis/etiología , Periodoncio/inmunología , Factores de Transcripción STAT/fisiología , Transducción de Señal/fisiología
10.
Front Bioeng Biotechnol ; 9: 783816, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34950645

RESUMEN

Titanium and its alloys are dominant material for orthopedic/dental implants due to their stable chemical properties and good biocompatibility. However, aseptic loosening and peri-implant infection remain problems that may lead to implant removal eventually. The ideal orthopedic implant should possess both osteogenic and antibacterial properties and do proper assistance to in situ inflammatory cells for anti-microbe and tissue repair. Recent advances in surface modification have provided various strategies to procure the harmonious relationship between implant and its microenvironment. In this review, we provide an overview of the latest strategies to endow titanium implants with bio-function and anti-infection properties. We state the methods they use to preparing these efficient surfaces and offer further insight into the interaction between these devices and the local biological environment. Finally, we discuss the unmet needs and current challenges in the development of ideal materials for bone implantation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA