Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 11: 1282315, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37929196

RESUMEN

Phaffia rhodozyma represents an excellent microbial resource for astaxanthin production. However, the yeast's low astaxanthin productivity poses challenges in scaling up industrial production. Although P. rhodozyma originates from plant material, and phytohormones have demonstrated their effectiveness in stimulating microbial production, there has been limited research on the effects and mechanisms of phytohormones on astaxanthin biosynthesis in P. rhodozyma. In this study, the addition of exogenous salicylic acid (SA) at a concentration as low as 0.5 mg/L significantly enhanced biomass, astaxanthin content, and yield by 20.8%, 95.8% and 135.3% in P. rhodozyma, respectively. Moreover, transcriptomic analysis showed that SA had discernible impact on the gene expression profile of P. rhodozyma cells. Differentially expressed genes (DEGs) in P. rhodozyma cells between the SA-treated and SA-free groups were identified. These genes played crucial roles in various aspects of astaxanthin and its competitive metabolites synthesis, material supply, biomolecule metabolite and transportation, anti-stress response, and global signal transductions. This study proposes a regulatory mechanism for astaxanthin synthesis induced by SA, encompassing the perception and transduction of SA signal, transcription factor-mediated gene expression regulation, and cellular stress responses to SA. Notably, the polyamine transporter gene (PT), identified as an upregulated DEG, was overexpressed in P. rhodozyma to obtain the transformant Prh-PT-006. The biomass, astaxanthin content and yield in this engineered strain could reach 6.6 g/L, 0.35 mg/g DCW and 2.3 mg/L, 24.5%, 143.1% and 199.0% higher than the wild strain at the SA-free condition, respectively. These findings provide valuable insights into potential targets for genetic engineering aimed at achieving high astaxanthin yields, and such advancements hold promise for expediting the industrialization of microbial astaxanthin production.

2.
Appl Opt ; 62(21): 5727-5734, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37707190

RESUMEN

The multi-spectral radiation method is a non-contact technique that can measure the temperature and emissivity of an object. However, its core problem lies in solving the underdetermined equation system. Existing numerical emissivity methods require prior knowledge of emissivity, while emissivity function methods need accurate initial conditions. These approaches are not suitable for measuring unknown targets' temperature and emissivity. This paper proposes a moving emissivity retardation spectral window method that does not require any prior knowledge or initial conditions. The proposed method defines the emissivity retardation interval based on the Lagrange mean value theorem to provide universal and high-precision constraint conditions for solving the aforementioned underdetermined equation system. Simulation experiments were conducted on four target models with different emissivity, which showed that, compared to the moving narrowband window method, this new, to the best of our knowldge, approach reduced average temperature calculation errors by 31.0% and average emissivity calculation errors by 30.7%. In blackbody experiments, the calculated temperature error is about 0.4 K, and the emissivity is about 0.993-0.999. The described method is expected to meet the practical measurement needs for a wide range of substances.

3.
Metab Brain Dis ; 36(8): 2299-2311, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34463942

RESUMEN

Ginkgo biloba extract 761 (EGb761), a standardized extract from the Ginkgo biloba leaf, is purported to inhibit NMDA receptor-mediated neuronal excitotoxicity and protect neurons form ischemic injury. However, the specific signal pathway involved in the effects of EGb761 on synaptic plasticity is still in dispute. In this article, effects of EGb761 and its monomer component ginkgolide A (GA), ginkgolide B (GB), ginkgolide C (GC) and quercetin on rat hippocampal synaptic plasticity were studied. The evoked Excitatory postsynaptic currents (EPSCs) and miniature EPSCs were recorded on hippocampal slices from SD rats (14-21 days of age) by whole-cell patch-clamp recording and long-term potentiation (LTP) was induced by theta-burst stimulation. Acutely applied EGb761 inhibited the LTP, but bilaterally affect the evoked EPSCs. The evoked EPSCs were increased by incubation of lower concentration of EGb761, then the evoked EPSCs were decreased by incubation of higher concentration of EGb761. EGb761 monomer component GA, GB and GC could also inhibit the TBS-induced LTP and EPSC amplitude but not paired-pulse ratio (PPR). But quercetin, another monomer component of EGb761, led to increase in EPSC amplitude and decrease in PPR. Simultaneously, EGb761 and its monomer component ginkgolides inhibited the post-ischemic LTP (i-LTP) by inhibiting the EPSCs and the AMPA receptor subunit GluA1 expression on postsynaptic membrane. The results indicated that high concentration of EGb761 might inhibit LTP and i-LTP through inhibition effects of GA, GB and GC on AMPA receptors.


Asunto(s)
Ginkgo biloba , Potenciación a Largo Plazo , Animales , Potenciales Postsinápticos Excitadores , Hipocampo/metabolismo , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , Ratas , Ratas Sprague-Dawley
4.
J Biol Chem ; 295(29): 10023-10031, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32499374

RESUMEN

Homeostatic scaling of the synapse, such as synaptic down-scaling, has been proposed to offset deleterious effects induced by sustained synaptic strength enhancement. Proper function and subcellular distribution of Src homology 2 domain-containing nonreceptor protein tyrosine phosphatase (SHP2) are required for synaptic plasticity. However, the role of SHP2 in synaptic down-scaling remains largely unknown. Here, using biochemical assays and cell-imaging techniques, we found that synaptic SHP2 levels are temporally regulated during synaptic down-scaling in cultured hippocampal neurons. Furthermore, we observed that a Noonan syndrome-associated mutation of SHP2, resulting in a D61G substitution, prevents synaptic down-scaling. We further show that this effect is due to an inability of the SHP2-D61G variant to properly disassociate from postsynaptic density protein 95, leading to impaired SHP2 dispersion from synaptic sites after synaptic down-scaling. Our findings reveal a molecular mechanism of the Noonan syndrome-associated genetic variant SHP2-D61G that contributes to deficient synaptic down-scaling.


Asunto(s)
Mutación Missense , Síndrome de Noonan/enzimología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Sinapsis/metabolismo , Sustitución de Aminoácidos , Animales , Homólogo 4 de la Proteína Discs Large/genética , Homólogo 4 de la Proteína Discs Large/metabolismo , Ratones , Síndrome de Noonan/genética , Síndrome de Noonan/patología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Sinapsis/genética , Sinapsis/patología
5.
Cell Discov ; 3: 17044, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29238610

RESUMEN

Reactive astrogliosis is a hallmark of many neurological disorders, yet its functions and molecular mechanisms remain elusive. Particularly, the upstream signaling that regulates pathological responses of astrocytes is largely undetermined. We used a mouse traumatic brain injury model to induce astrogliosis and revealed activation of ErbB receptors in reactive astrocytes. Moreover, cell-autonomous inhibition of ErbB receptor activity in reactive astrocytes by a genetic approach suppressed hypertrophic remodeling possibly through the regulation of actin dynamics. However, inhibiting ErbB signaling in reactive astrocytes did not affect astrocyte proliferation after brain injury, although it aggravated local inflammation. In contrast, active ErbB signaling in mature astrocytes of various brain regions in mice was sufficient to initiate reactive responses, reproducing characterized molecular and cellular features of astrogliosis observed in injured or diseased brains. Further, prevalent astrogliosis in the brain induced by astrocytic ErbB activation caused anorexia in animals. Therefore, our findings defined an unrecognized role of ErbB signaling in inducing reactive astrogliosis. Mechanistically, inhibiting ErbB signaling in reactive astrocytes prominently reduced Src and focal adhesion kinase (FAK) activity that is important for actin remodeling, although ErbB signaling activated multiple downstream signaling proteins. The discrepancies between the results from loss- and gain-of-function studies indicated that ErbB signaling regulated hypertrophy and proliferation of reactive astrocytes by different downstream signaling pathways. Our work demonstrated an essential mechanism in the pathological regulation of astrocytes and provided novel insights into potential therapeutic targets for astrogliosis-implicated diseases.

6.
Sci Rep ; 6: 29246, 2016 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-27385592

RESUMEN

It has been demonstrated that Src could modulate NMDA receptor, and PAR1 could also affect NMDAR signaling. However, whether PAR1 could regulate NMDAR through Src under ICH has not yet been investigated. In this study, we demonstrated the role of Src-PSD95-GluN2A signaling cascades in rat ICH model and in vitro thrombin challenged model. Using the PAR1 agonist SFLLR, antagonist RLLFS and Src inhibitor PP2, electrophysiological analysis showed that PAR1 regulated NMDA-induced whole-cell currents (INMDA) though Src in primary cultured neurons. Both in vivo and in vitro results showed the elevated phosphorylation of tyrosine in Src and GluN2A and enhanced interaction of the Src-PSD95-GluN2A under model conditions. Treatment with the PAR1 antagonist RLLFS, AS-PSD95 (Antisense oligonucleotide against PSD95) and Src inhibitor PP2 inhibited the interaction among Src-PSD95-GluN2A, and p-Src, p-GluN2A. Co-application of SFLLR and AS-PSD95, PP2, or MK801 (NMDAR inhibitor) abolished the effect of SF. In conclusion, our results demonstrated that activated thrombin receptor PAR1 induced Src activation, enhanced the interaction among Src-PSD95-GluN2A signaling modules, and up-regulated GluN2A phosphorylation after ICH injury. Elucidation of such signaling cascades would possibly provide novel targets for ICH treatment.


Asunto(s)
Hemorragia Cerebral/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Familia-src Quinasas/metabolismo , Animales , Masculino , Neuronas/metabolismo , Fosforilación/fisiología , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología , Trombina/metabolismo , Activación Transcripcional/fisiología , Tirosina/metabolismo , Regulación hacia Arriba/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA