Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(21)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37960592

RESUMEN

A Brain-Computer Interface (BCI) is a medium for communication between the human brain and computers, which does not rely on other human neural tissues, but only decodes Electroencephalography (EEG) signals and converts them into commands to control external devices. Motor Imagery (MI) is an important BCI paradigm that generates a spontaneous EEG signal without external stimulation by imagining limb movements to strengthen the brain's compensatory function, and it has a promising future in the field of computer-aided diagnosis and rehabilitation technology for brain diseases. However, there are a series of technical difficulties in the research of motor imagery-based brain-computer interface (MI-BCI) systems, such as: large individual differences in subjects and poor performance of the cross-subject classification model; a low signal-to-noise ratio of EEG signals and poor classification accuracy; and the poor online performance of the MI-BCI system. To address the above problems, this paper proposed a combined virtual electrode-based EEG Source Analysis (ESA) and Convolutional Neural Network (CNN) method for MI-EEG signal feature extraction and classification. The outcomes reveal that the online MI-BCI system developed based on this method can improve the decoding ability of multi-task MI-EEG after training, it can learn generalized features from multiple subjects in cross-subject experiments and has some adaptability to the individual differences of new subjects, and it can decode the EEG intent online and realize the brain control function of the intelligent cart, which provides a new idea for the research of an online MI-BCI system.


Asunto(s)
Interfaces Cerebro-Computador , Humanos , Electroencefalografía/métodos , Redes Neurales de la Computación , Imágenes en Psicoterapia , Electrodos , Algoritmos
2.
Artículo en Inglés | MEDLINE | ID: mdl-36099220

RESUMEN

Toward the development of effective and efficient brain-computer interface (BCI) systems, precise decoding of brain activity measured by an electroencephalogram (EEG) is highly demanded. Traditional works classify EEG signals without considering the topological relationship among electrodes. However, neuroscience research has increasingly emphasized network patterns of brain dynamics. Thus, the Euclidean structure of electrodes might not adequately reflect the interaction between signals. To fill the gap, a novel deep learning (DL) framework based on the graph convolutional neural networks (GCNs) is presented to enhance the decoding performance of raw EEG signals during different types of motor imagery (MI) tasks while cooperating with the functional topological relationship of electrodes. Based on the absolute Pearson's matrix of overall signals, the graph Laplacian of EEG electrodes is built up. The GCNs-Net constructed by graph convolutional layers learns the generalized features. The followed pooling layers reduce dimensionality, and the fully-connected (FC) softmax layer derives the final prediction. The introduced approach has been shown to converge for both personalized and groupwise predictions. It has achieved the highest averaged accuracy, 93.06% and 88.57% (PhysioNet dataset), 96.24% and 80.89% (high gamma dataset), at the subject and group level, respectively, compared with existing studies, which suggests adaptability and robustness to individual variability. Moreover, the performance is stably reproducible among repetitive experiments for cross-validation. The excellent performance of our method has shown that it is an important step toward better BCI approaches. To conclude, the GCNs-Net filters EEG signals based on the functional topological relationship, which manages to decode relevant features for brain MI. A DL library for EEG task classification including the code for this study is open source at https://github.com/SuperBruceJia/ EEG-DL for scientific research.

3.
Front Neurosci ; 16: 865594, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35615273

RESUMEN

Brain-computer interface (BCI) based on motor imagery (MI) can help patients with limb movement disorders in their normal life. In order to develop an efficient BCI system, it is necessary to decode high-accuracy motion intention by electroencephalogram (EEG) with low signal-to-noise ratio. In this article, a MI classification approach is proposed, combining the difference in EEG signals between the left and right hemispheric electrodes with a dual convolutional neural network (dual-CNN), which effectively improved the decoding performance of BCI. The positive and inverse problems of EEG were solved by the boundary element method (BEM) and weighted minimum norm estimation (WMNE), and then the scalp signals were mapped to the cortex layer. We created nine pairs of new electrodes on the cortex as the region of interest. The time series of the nine electrodes on the left and right hemispheric are respectively used as the input of the dual-CNN model to classify four MI tasks. The results show that this method has good results in both group-level subjects and individual subjects. On the Physionet database, the averaged accuracy on group-level can reach 96.36%, while the accuracies of four MI tasks reach 98.54, 95.02, 93.66, and 96.19%, respectively. As for the individual subject, the highest accuracy is 98.88%, and its four MI accuracies are 99.62, 99.68, 98.47, and 97.73%, respectively.

4.
Neurosci Res ; 176: 40-48, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34508756

RESUMEN

Motor imagery based brain computer interface (MI-BCI) has the advantage of strong independence that can rely on the spontaneous brain activity of the user to operate external devices. However, MI-BCI still has the problem of poor control effect, which requires more effective feature extraction algorithms and classification methods to extract distinctly separable features from electroencephalogram (EEG) signals. This paper proposes a novel framework based on Bispectrum, Entropy and common spatial pattern (BECSP). Here we use three methods of bispectrum in higher order spectra, entropy and CSP to extract MI-EEG signal features, and then select the most contributing features through tree-based feature selection algorithm. By comparing the classification results of SVM, Random Forest, Naive Bayes, LDA, KNN, Xgboost and Adaboost, we finally decide to use the SVM algorithm based on RBF kernel function which obtained the best result among them for classification. The proposed method is applied to the BCI competition IV data set 2a and BCI competition III data set IVa. On data set 2a, the highest accuracy on the evaluation data set reaches 85%. The experiment on data set IVa can also achieve good results. Compared with other algorithms that use the same data set, the performance of our algorithm has also been improved.


Asunto(s)
Interfaces Cerebro-Computador , Imaginación , Algoritmos , Teorema de Bayes , Electroencefalografía/métodos , Imágenes en Psicoterapia , Procesamiento de Señales Asistido por Computador
5.
Front Bioeng Biotechnol ; 9: 706229, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35223807

RESUMEN

Recognition accuracy and response time are both critically essential ahead of building the practical electroencephalography (EEG)-based brain-computer interface (BCI). However, recent approaches have compromised either the classification accuracy or the responding time. This paper presents a novel deep learning approach designed toward both remarkably accurate and responsive motor imagery (MI) recognition based on scalp EEG. Bidirectional long short-term memory (BiLSTM) with the attention mechanism is employed, and the graph convolutional neural network (GCN) promotes the decoding performance by cooperating with the topological structure of features, which are estimated from the overall data. Particularly, this method is trained and tested on the short EEG recording with only 0.4 s in length, and the result has shown effective and efficient prediction based on individual and groupwise training, with 98.81% and 94.64% accuracy, respectively, which outperformed all the state-of-the-art studies. The introduced deep feature mining approach can precisely recognize human motion intents from raw and almost-instant EEG signals, which paves the road to translate the EEG-based MI recognition to practical BCI systems.

6.
Front Hum Neurosci ; 14: 338, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33100985

RESUMEN

A brain-computer interface (BCI) based on electroencephalography (EEG) can provide independent information exchange and control channels for the brain and the outside world. However, EEG signals come from multiple electrodes, the data of which can generate multiple features. How to select electrodes and features to improve classification performance has become an urgent problem to be solved. This paper proposes a deep convolutional neural network (CNN) structure with separated temporal and spatial filters, which selects the raw EEG signals of the electrode pairs over the motor cortex region as hybrid samples without any preprocessing or artificial feature extraction operations. In the proposed structure, a 5-layer CNN has been applied to learn EEG features, a 4-layer max pooling has been used to reduce dimensionality, and a fully-connected (FC) layer has been utilized for classification. Dropout and batch normalization are also employed to reduce the risk of overfitting. In the experiment, the 4 s EEG data of 10, 20, 60, and 100 subjects from the Physionet database are used as the data source, and the motor imaginations (MI) tasks are divided into four types: left fist, right fist, both fists, and both feet. The results indicate that the global averaged accuracy on group-level classification can reach 97.28%, the area under the receiver operating characteristic (ROC) curve stands out at 0.997, and the electrode pair with the highest accuracy on 10 subjects dataset is FC3-FC4, with 98.61%. The research results also show that this CNN classification method with minimal (2) electrode can obtain high accuracy, which is an advantage over other methods on the same database. This proposed approach provides a new idea for simplifying the design of BCI systems, and accelerates the process of clinical application.

7.
J Neural Eng ; 17(1): 016048, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31585454

RESUMEN

OBJECTIVE: To develop and implement a novel approach which combines the technique of scout EEG source imaging (ESI) with convolutional neural network (CNN) for the classification of motor imagery (MI) tasks. APPROACH: The technique of ESI uses a boundary element method (BEM) and weighted minimum norm estimation (WMNE) to solve the EEG forward and inverse problems, respectively. Ten scouts are then created within the motor cortex to select the region of interest (ROI). We extract features from the time series of scouts using a Morlet wavelet approach. Lastly, CNN is employed for classifying MI tasks. MAIN RESULTS: The overall mean accuracy on the Physionet database reaches 94.5% and the individual accuracy of each task reaches 95.3%, 93.3%, 93.6%, 96% for the left fist, right fist, both fists and both feet, correspondingly, validated using ten-fold cross validation. We report an increase of up to 14.4% for overall classification compared with the competitive results from the state-of-the-art MI classification methods. Then, we add four new subjects to verify the validity of the method and the overall mean accuracy is 92.5%. Furthermore, the global classifier was adapted to single subjects improving the overall mean accuracy to 94.54%. SIGNIFICANCE: The combination of scout ESI and CNN enhances BCI performance of decoding EEG four-class MI tasks.


Asunto(s)
Interfaces Cerebro-Computador , Electroencefalografía/métodos , Imaginación/fisiología , Corteza Motora/fisiología , Movimiento/fisiología , Desempeño Psicomotor/fisiología , Electroencefalografía/instrumentación , Humanos , Redes Neurales de la Computación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...