Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Res Neurobiol ; 3: 100039, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36518341

RESUMEN

Cognitive impairment, particularly deficits in executive function (EF) is common in Parkinson's disease (PD) and may lead to dementia. There are currently no effective treatments for cognitive impairment. Work from our lab and others has shown that physical exercise may improve motor performance in PD but its role in cognitive function remains poorly eludicated. In this study in a rodent model of PD, we sought to examine whether exercise improves cognitive processing and flexibility, important features of EF. Rats received 6-hydroxydopamine lesions of the bilateral striatum (caudate-putamen, CPu), specifically the dorsomedial CPu, a brain region central to EF. Rats were exercised on motorized running wheels or horizontal treadmills for 6-12 weeks. EF-related behaviors including attention and processing, as well as flexibility (inhibition) were evaluated using either an operant 3-choice serial reaction time task (3-CSRT) with rule reversal (3-CSRT-R), or a T-maze task with reversal. Changes in striatal transcript expression of dopamine receptors (Drd1-4) and synaptic proteins (Synaptophysin, PSD-95) were separately examined following 4 weeks of exercise in a subset of rats. Exercise/Lesion rats showed a modest, yet significant improvement in processing-related response accuracy in the 3-CSRT-R and T-maze, as well as a significant improvement in cognitive flexibility as assessed by inhibitory aptitude in the 3-CSRT-R. By four weeks, exercise also elicited increased expression of Drd1, Drd3, Drd4, synaptophysin, and PSD-95 in the dorsomedial and dorsolateral CPu. Our results underscore the observation that exercise, in addition to improving motor function may benefit cognitive performance, specifically EF, and that early changes (by 4 weeks) in CPu dopamine modulation and synaptic connectivity may underlie these benefits.

2.
Mol Neurobiol ; 59(2): 1002-1017, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34822124

RESUMEN

Monocarboxylate transporters (MCTs) shuttle molecules, including L-lactate, involved in metabolism and cell signaling of the central nervous system. Astrocyte-specific MCT4 is a key component of the astrocyte-neuron lactate shuttle (ANLS) and is important for neuroplasticity and learning of the hippocampus. However, the importance of astrocyte-specific MCT4 in neuroplasticity of the M1 primary motor cortex remains unknown. In this study, we investigated astrocyte-specific MCT4 in motor learning and neuroplasticity of the M1 primary motor cortex using a cell-type specific shRNA knockdown of MCT4. Knockdown of astrocyte-specific MCT4 resulted in impaired motor performance and learning on the accelerating rotarod. In addition, MCT4 knockdown was associated with a reduction of neuronal dendritic spine density and spine width and decreased protein expression of PSD95, Arc, and cFos. Using near-infrared-conjugated 2-deoxyglucose uptake as a surrogate marker for neuronal activity, MCT4 knockdown was also associated with decreased neuronal activity in the M1 primary motor cortex and associated motor regions including the dorsal striatum and ventral thalamus. Our study supports a potential role for astrocyte-specific MCT4 and the ANLS in the neuroplasticity of the M1 primary motor cortex. Targeting MCT4 may serve to enhance neuroplasticity and motor repair in several neurological disorders, including Parkinson's disease and stroke.


Asunto(s)
Astrocitos , Transportadores de Ácidos Monocarboxílicos , Corteza Motora , Animales , Astrocitos/metabolismo , Espinas Dendríticas/metabolismo , Humanos , Ácido Láctico/metabolismo , Ratones , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Corteza Motora/metabolismo , Neuronas/metabolismo
3.
J Neurosci Res ; 99(5): 1433-1447, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33629362

RESUMEN

l-Lactate is an energetic and signaling molecule that may be produced through astrocyte-specific aerobic glycolysis and is elevated in striatal muscle during intensive exercise. l-Lactate has been shown to promote neurotrophic gene expression through astrocytes within the hippocampus, however, its role in neuroplasticity within the striatum remains unknown. This study sought to investigate the role of peripheral sources of l-lactate in promoting astrocyte-specific gene expression and morphology as well as its role in neuroplasticity within the striatum of healthy animals. Using in vitro primary astrocyte cell culture, administration of l-lactate increased the expression of the neurotrophic factors Bdnf, Gdnf, Cntf, and the immediate early gene cFos. l-Lactate's promotion of neurotrophic factor expression was mediated through the lactate receptor HCAR1 since application of the HCAR1 agonist 3,5-DHBA also increased expression of Bdnf in primary astrocytes. Similar to our previous report demonstrating exercise-induced changes in astrocytic structure within the striatum, l-lactate administration to healthy mice led to increased astrocyte morphological complexity as well as astrocyte-specific neurotrophic expression within the striatum. Our study failed to demonstrate an effect of peripheral l-lactate on synaptogenesis or motor behavior. Insufficient levels and/or inadequate delivery of l-lactate through regional cerebral blood flow within the striatum may account for the lack of these benefits. Taken together, these novel findings suggest a potential framework that links peripheral l-lactate production within muscle and intensive exercise with neuroplasticity of specific brain regions through astrocytic function.


Asunto(s)
Astrocitos/fisiología , Cuerpo Estriado/fisiología , Ácido Láctico/farmacología , Actividad Motora/fisiología , Plasticidad Neuronal/fisiología , Sinapsis/fisiología , Animales , Astrocitos/efectos de los fármacos , Células Cultivadas , Cuerpo Estriado/efectos de los fármacos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Neurogénesis/fisiología , Plasticidad Neuronal/efectos de los fármacos , Sinapsis/efectos de los fármacos
4.
Neuroreport ; 31(15): 1055-1064, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-32881776

RESUMEN

Lesions of the dorsomedial striatum elicit deficits in cognitive flexibility that are an early feature of Parkinson's disease (PD), and presumably reflect alterations in frontostriatal processing. The current study aimed to examine deficits in cognitive flexibility in rats with bilateral 6-hydroxydopamine lesions in the dorsomedial striatum. While deficits in cognitive flexibility have previously been examined in rodent PD models using the cross-maze, T-maze, and a food-digging task, the current study is the first to examine such deficits using a 3-choice serial reaction time task (3-CSRT) with reversal learning (3-CSRT-R). Although the rate of acquisition in 3-CSRT was slower in lesioned compared to control rats, lesioned animals were able to acquire a level of accuracy comparable to that of control animals following 4 weeks of training. In contrast, substantial and persistent deficits were apparent during the reversal learning phase. Our results demonstrate that deficits in cognitive flexibility can be robustly unmasked by reversal learning in the 3-CSRT-R paradigm, which can be a useful test for evaluating effects of dorsomedial striatal deafferentation and interventions.


Asunto(s)
Conducta de Elección/fisiología , Disfunción Cognitiva/patología , Cuerpo Estriado/patología , Oxidopamina/toxicidad , Tiempo de Reacción/fisiología , Aprendizaje Inverso/fisiología , Animales , Conducta de Elección/efectos de los fármacos , Cognición/efectos de los fármacos , Cognición/fisiología , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/psicología , Cuerpo Estriado/efectos de los fármacos , Discriminación en Psicología/efectos de los fármacos , Discriminación en Psicología/fisiología , Masculino , Ratas , Ratas Wistar , Tiempo de Reacción/efectos de los fármacos , Aprendizaje Inverso/efectos de los fármacos
5.
J Neurosci Res ; 97(9): 1081-1094, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31175682

RESUMEN

Astrocytes are essential mediators of many aspects of synaptic transmission and neuroplasticity. Exercise has been demonstrated to induce neuroplasticity and synaptic remodeling, such as through mediating neurorehabilitation in animal models of neurodegeneration. However, the effects of exercise on astrocytic function, and how such changes may be relevant to neuroplasticity remain unclear. Here, we show that exercise remodels astrocytes in an exercise- and region-dependent manner as measured by GFAP and SOX9 immunohistochemistry and morphological analysis in male mice. Additionally, qRT-PCR analysis of reactive astrocyte gene expression showed an exercise-induced elevation in brain regions known to be activated by exercise. Taken together, these data demonstrate that exercise actively modifies astrocyte morphology and drives changes in astrocyte gene expression and suggest that astrocytes may be a central component to exercise-induced neuroplasticity and neurorehabilitation.


Asunto(s)
Astrocitos/citología , Regulación de la Expresión Génica/fisiología , Condicionamiento Físico Animal/fisiología , Animales , Astrocitos/metabolismo , Encéfalo/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal
6.
Neuroreport ; 30(9): 619-627, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31045849

RESUMEN

Exercise and other forms of physical activity lead to the activation of specific motor and cognitive circuits within the mammalian brain. These activated neuronal circuits are subjected to increased metabolic demand and must respond to transient but significant reduction in available oxygen. The transcription factor hypoxia-inducible factor 1α (HIF-1α) is a regulatory mediator of a wide spectrum of genes involved in metabolism, synaptogenesis, and blood flow. The purpose of this study was to begin to explore the potential relationship between exercise in the form of running on a motorized treadmill and the activation of genes involved in exercise-dependent neuroplasticity to begin to elucidate the underlying molecular mechanisms involved. Mice were subjected to treadmill exercise and striatal tissues analyzed with a commercial microarray designed to identify transcripts whose expression is altered by exposure to hypoxia, a condition occurring in cells under a high metabolic demand. Several candidate genes were identified, and a subset involved in metabolism and angiogenesis were selected to elucidate their temporal and regional patterns of expression with exercise. Transcript analysis included Hif1a (hypoxia-inducible factor 1α), Ldha (lactate dehydrogenase A), Slc2a1 (glucose transporter 1), Slc16a1 (monocarboxylate transporter 1), Slc16a7 (monocarboxylate transporter 2), and Vegf (vascular endothelial growth factor). Overall these results indicate that several genes involved in the elevated metabolic response with exercise are consistent with increased expression of HIF-1α suggesting a regulatory role for HIF-1α in exercise-enhanced neuroplasticity. Furthermore, these increases in gene expression appear regionally specific; occurring with brain regions we have previously shown to be sites for increased cerebral blood flow with activity. Such findings are beginning to lay down a working hypothesis that specific forms of exercise lead to circuit specific neuronal activation and can identify a potentially novel therapeutic approach to target dysfunctional behaviors subserved by such circuitry.


Asunto(s)
Encéfalo/metabolismo , Regulación de la Expresión Génica/fisiología , Subunidad alfa del Factor 1 Inducible por Hipoxia/biosíntesis , Plasticidad Neuronal/fisiología , Condicionamiento Físico Animal/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL
7.
Geroscience ; 39(5-6): 499-550, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29270905

RESUMEN

A paradox is a seemingly absurd or impossible concept, proposition, or theory that is often difficult to understand or explain, sometimes apparently self-contradictory, and yet ultimately correct or true. How is it possible, for example, that oxygen "a toxic environmental poison" could be also indispensable for life (Beckman and Ames Physiol Rev 78(2):547-81, 1998; Stadtman and Berlett Chem Res Toxicol 10(5):485-94, 1997)?: the so-called Oxygen Paradox (Davies and Ursini 1995; Davies Biochem Soc Symp 61:1-31, 1995). How can French people apparently disregard the rule that high dietary intakes of cholesterol and saturated fats (e.g., cheese and paté) will result in an early death from cardiovascular diseases (Renaud and de Lorgeril Lancet 339(8808):1523-6, 1992; Catalgol et al. Front Pharmacol 3:141, 2012; Eisenberg et al. Nat Med 22(12):1428-1438, 2016)?: the so-called, French Paradox. Doubtless, the truth is not a duality and epistemological bias probably generates apparently self-contradictory conclusions. Perhaps nowhere in biology are there so many apparently contradictory views, and even experimental results, affecting human physiology and pathology as in the fields of free radicals and oxidative stress, antioxidants, foods and drinks, and dietary recommendations; this is particularly true when issues such as disease-susceptibility or avoidance, "healthspan," "lifespan," and ageing are involved. Consider, for example, the apparently paradoxical observation that treatment with low doses of a substance that is toxic at high concentrations may actually induce transient adaptations that protect against a subsequent exposure to the same (or similar) toxin. This particular paradox is now mechanistically explained as "Adaptive Homeostasis" (Davies Mol Asp Med 49:1-7, 2016; Pomatto et al. 2017a; Lomeli et al. Clin Sci (Lond) 131(21):2573-2599, 2017; Pomatto and Davies 2017); the non-damaging process by which an apparent toxicant can activate biological signal transduction pathways to increase expression of protective genes, by mechanisms that are completely different from those by which the same agent induces toxicity at high concentrations. In this review, we explore the influences and effects of paradoxes such as the Oxygen Paradox and the French Paradox on the etiology, progression, and outcomes of many of the major human age-related diseases, as well as the basic biological phenomenon of ageing itself.


Asunto(s)
Adaptación Fisiológica , Envejecimiento/genética , Dieta Rica en Proteínas/estadística & datos numéricos , Hipercolesterolemia/epidemiología , Estrés Oxidativo/fisiología , Oxígeno/metabolismo , Anciano , Anciano de 80 o más Años , Envejecimiento/fisiología , Femenino , Francia , Radicales Libres/metabolismo , Evaluación Geriátrica , Humanos , Masculino , Persona de Mediana Edad , Medición de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...