Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 11656, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38778127

RESUMEN

Conventional binding materials, such as silicate cement and lime, present high energy consumption, pollution, and carbon emissions. Therefore, we utilize crushed stone as a stabilization material. Magnesium oxychloride cement (MOC) is modified and used as an inorganic admixture owing to its eco-friendly nature and low carbon content. We analysed the control indicators of an integrated design of MOC-stabilized crushed stone by conducting unconfined compressive strength and water-resistance tests. The optimum mixing composition of the MOC-stabilized crushed stone was determined through the response surface methodology. We determined the best approach and dosage for improving the water resistance of MOC-stabilized crushed stone by comparing the effects of four modification methods: fly ash, citric acid + silica fume, phosphoric acid + waterborne polyurethane, and dihydrogen phosphate potassium salt. We also perform a comparison with 5% ordinary silicate cement-stabilized crushed stone. The results indicate that the MOC-stabilized crushed stone exhibits a rapid increase in strength in the early stage, but this rate reduces after 28 days. The mixing design employs the 4-day unconfined compressive strength and 1-day water resistance coefficient as the technical indicators. The best mixing composition includes a 4.27% MOC dosage and a molar ratio of MgO/MgCl2 of 5.85. We use 1% citric acid + 10% silica fume in equal amounts to replace the MOC dopant method for composite modification of the MOC stabilized crushed stone. Consequently, the 1-day water resistance coefficient before water immersion is significantly increased from 0.78 to 0.91 and its 4-day unconfined compressive strength is only reduced by 0.10 MPa. This significantly improves the water resistance of the MOC-stabilized crushed stone and ensures that its strength remains unaffected, which is the optimal modification method. However, this method must ensure that a small amount of citric acid and silica fume are uniformly distributed in the MOC-stabilized crushed stone, which increases the construction difficulty of the road base.

2.
Reprod Domest Anim ; 56(4): 629-641, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33492695

RESUMEN

The microenvironment in the seminiferous tubules of buffalo changes with age, which affects the self-renewal and growth of spermatogonial stem cells (SSCs) and the process of spermatogenesis, but the mechanism remains to be elucidated. RNA-seq was performed to compare the transcript profiles of pre-pubertal buffalo (PUB) and adult buffalo (ADU) seminiferous tubules. In total, 17,299 genes from PUB and ADU seminiferous tubules identified through RNA-seq, among which 12,271 were expressed in PUB and ADU seminiferous tubules, 4,027 were expressed in only ADU seminiferous tubules, and 956 were expressed in only PUB seminiferous tubules. Of the 17,299 genes, we identified 13,714 genes that had significant differences in expression levels between PUB and ADU through GO enrichment analysis. Among these genes, 5,342 were significantly upregulated and possibly related to the formation or identity of the surface antigen on SSCs during self-renewal; 7,832 genes were significantly downregulated, indicating that genes in PUB seminiferous tubules do not participate in the biological processes of sperm differentiation or formation in this phase compared with those in ADU seminiferous tubules. Subsequently, through the combination with KEGG analysis, we detected enrichment in a number of genes related to the development of spermatogonial stem cells, providing a reference for study of the development mechanism of buffalo spermatogonial stem cells in the future. In conclusion, our data provide detailed information on the mRNA transcriptomes in PUB and ADU seminiferous tubules, revealing the crucial factors involved in maintaining the microenvironment and providing a reference for further in vitro cultivation of SSCs.


Asunto(s)
Células Madre Germinales Adultas/fisiología , Búfalos/fisiología , Perfilación de la Expresión Génica/veterinaria , Maduración Sexual/fisiología , Animales , Regulación del Desarrollo de la Expresión Génica , Masculino , ARN Mensajero , Túbulos Seminíferos/citología , Túbulos Seminíferos/fisiología
3.
Anim Reprod Sci ; 186: 44-51, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28982519

RESUMEN

Nanos2 belongs to the Nanos gene-coding family and is an important RNA-binding protein that has been shown to have essential roles in male germline stem cells development and self-renewal in mouse. However, little is known about Nanos2 in inchoate buffalo spermatogonia. Here, rapid-amplification of cDNA ends (RACE) was used to obtain the full-length buffalo Nanos2 sequence and bioinformatic analysis revealed a highly conserved Nanos2 sequence between buffalo and other mammalian species. Although Nanos2 was expressed in various tissues, the highest mRNA expression levels were found in testes tissue. Moreover, Nanos2 mRNA was abundant in fetal and pre-puberal testes but markedly decreased in the testes of adults. At the protein level, immunohistochemistry in pre-puberal testes revealed a pattern of NANOS2 expression similar to that for the undifferentiated type A spermatogonia marker PGP9.5. Furthermore, NANOS2 expression was low in adult testes and restricted to elongating spermatids. Altogether, our data suggest that Nanos2 is a potential preliminary molecular marker of inchoate buffalo spermatogonia, and may play an important role in buffalo spermatogonial stem cells (SSCs) development and self-renewal, as has been observed in other model animals.


Asunto(s)
Búfalos/genética , Marcadores Genéticos , Proteínas de Unión al ARN/genética , Espermatogonias/fisiología , Animales , Búfalos/crecimiento & desarrollo , Clonación Molecular , Biología Computacional , Regulación del Desarrollo de la Expresión Génica , Masculino , Maduración Sexual , Testículo/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...