Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 10: 1053653, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36532565

RESUMEN

Nanomedicine has been extensively studied for its versatility and broad-spectrum applications of theranostics in the research of respiratory disease. However, to the best of our knowledge, a scientometrics study based on the scientific knowledge assay of the overall situation on nanomedicine applied in the research of respiratory disease has not been reported so far, which would be of major importance to relevant researchers. To explore and exhibit the research status and developing trend of nanomedicines deployed in basic or clinical research in respiratory disease, the research ecosystem and exciting subareas were profiled based on the massive data mining and visualization from the relevant works reported from 2006 to 2021. Data were collected from the Web of Science database. Data statistics software and bibliometric analysis software were employed to visualize the research trend and the relationship between respiratory diseases and nanomedicines in each representative direction. The cluster analysis and burst detections indicated that the improvement of drug delivery and vaccine developments are the up-to-date key directions in nanomedicines for respiratory disease research and treatments. Furthermore, we emphatically studied four branch areas in this field including COVID-19, nanotube, respiratory syncytial virus, and mRNA vaccine those are selected for in-depth mining and bibliometric coupling analysis. Research trends signify the future focuses will center on preventing respiratory diseases with mRNA vaccines using nanoparticle-based approaches. We anticipate our study will enable researchers to have the panorama and deep insights in this area, thus inspiriting further exploitations especially the nanobiomaterial-based systems for theranostic applications in respiratory disease treatment.

2.
Pharmaceutics ; 14(7)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35890373

RESUMEN

5-aminolevulinic acid (5-ALA) has been extensively studied for its sustainability and broad-spectrum applications in medical research and theranostics, as well as other areas. It's a precursor of protoporphyrin IX (PpIX), a sustainable endogenous and naturally-existing photosensitizer. However, to the best of our knowledge, a scientometrics study based on the scientific knowledge assay of the overall situation on 5-ALA research has not been reported so far, which would be of major importance to the relevant researchers. In this study, we collected all the research articles published in the last two decades from the Web of Science Core Collection database and employed bibliometric methods to comprehensively analyze the dataset from different perspectives using CiteSpace. A total of 1595 articles were identified. The analysis results showed that China published the largest number of articles, and SBI Pharmaceuticals Co., Ltd. was the most productive institution that sponsored several of the most productive authors. The cluster analysis and burst detections indicated that the improvement of photodynamic efficacy theranostics is the up-to-date key direction in 5-ALA research. Furthermore, we emphatically studied nanotechnology involvement in 5-ALA delivery and theranostics research. We envision that our results will be beneficial for researchers to have a panorama of and deep insights into this area, thus inspiring further exploitations, especially of the nanomaterial-based systems for 5-ALA delivery and theranostic applications.

3.
Front Med (Lausanne) ; 8: 729300, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34604266

RESUMEN

Bacterial infections are common diseases causing tremendous deaths in clinical settings. It has been a big challenge to human beings because of the antibiotics abuse and the newly emerging microbes. Photodynamic therapy (PDT) is a reactive oxygen species-based therapeutic technique through light-activated photosensitizer (PS). Recent studies have highlighted the potential of PDT as an alternative method of antibacterial treatment for its broad applicability and high efficiency. However, there are some shortcomings due to the low selectivity and specificity of PS. Growing evidence has shown that drug delivery nanoplatforms have unique advantages in enhancing therapeutic efficacy of drugs. Particularly, stimuli-responsive nanoplatforms, as a promising delivery system, provide great opportunities for the effective delivery of PS. In the present mini-review, we briefly introduced the unique microenvironment in bacterial infection tissues and the application of PDT on bacterial infections. Then we review the stimuli-responsive nanoplatforms (including pH-, enzymes-, redox-, magnetic-, and electric-) used in PDT against bacterial infections. Lastly, some perspectives have also been proposed to further promote the future developments of antibacterial PDT.

4.
BMC Genomics ; 20(1): 775, 2019 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-31653202

RESUMEN

BACKGROUND: Calcineurin B-like proteins (CBLs) are major Ca2+ sensors that interact with CBL-interacting protein kinases (CIPKs) to regulate growth and development in plants. The CBL-CIPK network is involved in stress response, yet little is understood on how CBL-CIPK function in pepper (Capsicum annuum L.), a staple vegetable crop that is threatened by biotic and abiotic stressors. RESULTS: In the present study, nine CaCBL and 26 CaCIPK genes were identified in pepper and the genes were named based on their chromosomal order. Phylogenetic and structural analysis revealed that CaCBL and CaCIPK genes clustered in four and five groups, respectively. Quantitative real-time PCR (qRT-PCR) assays showed that CaCBL and CaCIPK genes were constitutively expressed in different tissues, and their expression patterns were altered when the plant was exposed to Phytophthora capsici, salt and osmotic stress. CaCIPK1 expression changed in response to stress, including exposure to P. capsici, NaCl, mannitol, salicylic acid (SA), methyl jasmonate (MeJA), abscisic acid (ABA), ethylene (ETH), cold and heat stress. Knocking down CaCIPK1 expression increased the susceptibility of pepper to P. capsici, reduced root activity, and altered the expression of defense related genes. Transient overexpression of CaCIPK1 enhanced H2O2 accumulation, cell death, and expression of genes involved in defense. CONCLUSIONS: Nine CaCBL and 26 CaCIPK genes were identified in the pepper genome, and the expression of most CaCBL and CaCIPK genes were altered when the plant was exposed to stress. In particular, we found that CaCIPK1 is mediates the pepper plant's defense against P. capsici. These results provide the groundwork for further functional characterization of CaCBL and CaCIPK genes in pepper.


Asunto(s)
Capsicum/genética , Capsicum/microbiología , Phytophthora/fisiología , Proteínas de Plantas/genética , Capsicum/efectos de los fármacos , Capsicum/fisiología , Cromosomas de las Plantas/genética , Duplicación de Gen , Espacio Intracelular/metabolismo , Filogenia , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/metabolismo , Transporte de Proteínas/genética , Análisis de Secuencia , Estrés Fisiológico/genética
5.
Genes (Basel) ; 10(7)2019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-31319566

RESUMEN

Phytophthora blight is one of the most destructive diseases of pepper (Capsicum annuum L.) globally. The APETALA2/Ethylene Responsive Factors (AP2/ERF) genes play a crucial role in plant response to biotic stresses but, to date, have not been studied in the context of Phytophthora resistance in pepper. Here, we documented potential roles for the pepper CaAP2/ERF064 gene in inducing cell death and conferring resistance to Phytophthora capsici (P. capsici) infection. Results revealed that the N-terminal, AP2 domain, and C-terminal of CaAP2/ERF064 protein is responsible for triggering cell death in Nicotiana benthamiana (N. benthamiana). Moreover, the transcription of CaAP2/ERF064 in plant is synergistically regulated by the Methyl-Jasmonate (MeJA) and ethephon (ET) signaling pathway. CaAP2/ERF064 was found to regulate the expression of CaBPR1, which is a pathogenesis-related (PR) gene of pepper. Furthermore, the silencing of CaAP2/ERF064 compromised the pepper plant resistance to P.capsici by reducing the transcript level of defense-related genes CaBPR1, CaPO2, and CaSAR82, while the ectopic expression of CaAP2/ERF064 in N. benthamiana plant elevated the expression level of NbPR1b and enhanced resistance to P.capsici. These results suggest that CaAP2/ERF064 could positively regulate the defense response against P. capsici by modulating the transcription of PR genes in the plant.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Piper nigrum/genética , Muerte Celular , Resistencia a la Enfermedad/genética , Expresión Génica Ectópica , Silenciador del Gen , Interacciones Huésped-Patógeno/genética , Fenotipo , Phytophthora , Piper nigrum/metabolismo , Piper nigrum/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas/metabolismo , Transcripción Genética
6.
Protoplasma ; 256(1): 39-51, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29946904

RESUMEN

Environmental stress affects growth and development of crops, and reduces yield and quality of crops. To cope with environmental stressors, plants have sophisticated defense mechanisms, including the HSF/HSP pathway. Here, we identify the expression pattern of CaHSP16.4 in thermo-tolerant and thermo-sensitive pepper (Capsicum annuum L.) lines. Under heat stress, R9 thermo-tolerant line had higher CaHSP16.4 expression level than the B6 thermo-sensitive line. Under drought stress, expression pattern of CaHSP16.4 was dynamic. Initially, CaHSP16.4 was downregulated then CaHSP16.4 significantly increased. Subcellular localization assay showed that CaHSP16.4 localizes in cytoplasm and nucleus. In the R9 line, silencing of CaHSP16.4 resulted in a significant increase in malonaldehyde content and a significant reduction in total chlorophyll content, suggesting that silencing of CaHSP16.4 reduces heat and drought stresses tolerance. Overexpression of CaHSP16.4 enhances tolerance to heat stress in Arabidopsis. Under heat stress, the survival rate of CaHSP16.4 overexpression lines was significantly higher than wild type. Furthermore, under heat, drought, and combined stress conditions, the CaHSP16.4-overexpression lines had lower relative electrolytic leakage and malonaldehyde content, higher total chlorophyll content, and higher activity levels of superoxide dismutase, catalase, ascorbic acid peroxidase, and glutathione peroxidase compared to wild type. Furthermore, the expression levels of the stress response genes in the overexpression lines were higher than the wild type. These results indicate that the overexpression of CaHSP16.4 enhances the ability of reactive oxygen species scavenging under heat and drought stress.


Asunto(s)
Capsicum/química , Proteínas de Choque Térmico Pequeñas/metabolismo , Proteínas de Plantas/química , Especies Reactivas de Oxígeno/metabolismo , Sequías , Calor , Estrés Fisiológico
7.
Int J Mol Sci ; 20(1)2018 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-30583543

RESUMEN

SBP-box (Squamosa-promoter binding protein) genes are a type of plant-specific transcription factor and play important roles in plant growth, signal transduction and stress response. However, little is known about the SBP-box genes in pepper (CaSBP), especially in the process of Phytophthora capsici infection. In this study, a novel gene (CaSBP12) was selected from the CaSBP gene family, which was isolated from the pepper genome database in our previous study. The CaSBP12 gene was located in the nucleus of the cell and its silencing in the pepper plant enhanced the defense response against Phytophthora capsici infection. After inoculation with Phytophthora capsici, the root activity of the CaSBP12-silenced plants is compared to control plants, while malondialdehyde (MDA) content is compared viceversa. Additionally, the expression of defense related genes (CaPO1, CaSAR8.2, CaBPR1, and CaDEF1) in the silenced plants were induced to different degrees and the peak of CaSAR8.2 and CaBPR1 were higher than that of CaDEF1. The CaSBP12 over-expressed Nicotiana benthamiana plants were more susceptible to Phytophthora capsici infection with higher EC (electrical conductivity) and MDA contents as compared to the wild-type. The relative expression of defense related genes (NbDEF, NbNPR1, NbPR1a, and NbPR1b) in transgenic and wild-type Nicotiana benthamiana plants were induced, especially the NbPR1a and NbPR1b. In conclusion, these results indicate that CaSBP12 gene negative regulates the defense response against Phytophthora capsici infection which suggests their potentially significant role in plant defense. To our knowledge, this is the first report on CaSBP gene which negative regulate defense response.


Asunto(s)
Capsicum/fisiología , Resistencia a la Enfermedad/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Phytophthora/patogenicidad , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/parasitología , Factores de Transcripción/metabolismo , Acetatos/farmacología , Capsicum/efectos de los fármacos , Capsicum/genética , Ciclopentanos/farmacología , Resistencia a la Enfermedad/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Oxilipinas/farmacología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/parasitología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/parasitología , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/fisiología , Ácido Salicílico/farmacología , Factores de Transcripción/genética
8.
Int J Mol Sci ; 19(8)2018 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-30060631

RESUMEN

Chitin-binding proteins are pathogenesis-related gene family, which play a key role in the defense response of plants. However, thus far, little is known about the chitin-binding family genes in pepper (Capsicum annuum L.). In current study, 16 putative chitin genes (CaChi) were retrieved from the latest pepper genome database, and were classified into four distinct classes (I, III, IV and VI) based on their sequence structure and domain architectures. Furthermore, the structure of gene, genome location, gene duplication and phylogenetic relationship were examined to clarify a comprehensive background of the CaChi genes in pepper. The tissue-specific expression analysis of the CaChi showed the highest transcript levels in seed followed by stem, flower, leaf and root, whereas the lowest transcript levels were noted in red-fruit. Phytophthora capsici post inoculation, most of the CaChi (CaChiI3, CaChiIII1, CaChiIII2, CaChiIII4, CaChiIII6, CaChiIII7, CaChiIV1, CaChiVI1 and CaChiVI2) were induced by both strains (PC and HX-9). Under abiotic and exogenous hormonal treatments, the CaChiIII2, CaChiIII7, CaChiVI1 and CaChiVI2 were upregulated by abiotic stress, while CaChiI1, CaChiIII7, CaChiIV1 and CaChiIV2 responded to hormonal treatments. Furthermore, CaChiIV1-silenced plants display weakened defense by reducing (60%) root activity and increase susceptibility to NaCl stress. Gene ontology (GO) enrichment analysis revealed that CaChi genes primarily contribute in response to biotic, abiotic stresses and metabolic/catabolic process within the biological process category. These results exposed that CaChi genes are involved in defense response and signal transduction, suggesting their vital roles in growth regulation as well as response to stresses in pepper plant. In conclusion, these finding provide basic insights for functional validation of the CaChi genes in different biotic and abiotic stresses.


Asunto(s)
Capsicum/genética , Quitina/metabolismo , Regulación de la Expresión Génica de las Plantas , Phytophthora/fisiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Proteínas de Plantas/genética , Capsicum/fisiología , Resistencia a la Enfermedad , Ontología de Genes , Genoma de Planta , Interacciones Huésped-Parásitos , Filogenia , Hojas de la Planta , Proteínas de Plantas/metabolismo , Unión Proteica , Estrés Fisiológico
9.
Genome ; 61(9): 663-674, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29958096

RESUMEN

The AP2/ERF family is one of the largest transcription factor families in the plant kingdom. AP2/ERF genes contributing to various processes including plant growth, development, and response to various stresses have been identified. In this study, 175 putative AP2/ERF genes were identified in the latest pepper genome database and classified into AP2, RAV, ERF, and Soloist subfamilies. Their chromosomal localization, gene structure, conserved motif, cis-acting elements within the promoter region, and subcellular locations were analyzed. Transient expression of CaAP2/ERF proteins in tobacco revealed that CaAP2/ERF064, CaAP2/ERF109, and CaAP2/ERF127 were located in the nucleus, while CaAP2/ERF171 was located in the nucleus and cytoplasm. Most of the CaAP2/ERF genes contained cis-elements within their promoter regions that responded to various stresses (HSE, LTR, MBS, Box-W1/W-box, and TC-rich repeats) and phytohormones (ABRE, CGTCA-motif, and TCA-element). Furthermore, RNA-seq analysis revealed that CaAP2/ERF genes showed differential expression profiles in various tissues as well as under biotic stresses. Moreover, qRT-PCR analysis of eight selected CaAP2/ERF genes also showed differential expression patterns in response to infection with Phytophthora capsici (HX-9) and in response to phytohormones (SA, MeJA, and ETH). This study will provide basic insights for further studies of the CaAP2/ERF genes involved in the interaction between pepper and P. capsici.


Asunto(s)
Capsicum/genética , Proteínas de Plantas/genética , Factores de Transcripción/genética , Capsicum/microbiología , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Familia de Multigenes , Phytophthora/patogenicidad , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Transporte de Proteínas , Nicotiana/genética , Factores de Transcripción/metabolismo
10.
Front Plant Sci ; 7: 114, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26904076

RESUMEN

Abiotic stresses such as high temperature, salinity, and drought adversely affect the survival, growth, and reproduction of plants. Plants respond to such unfavorable changes through developmental, physiological, and biochemical ways, and these responses require expression of stress-responsive genes, which are regulated by a network of transcription factors (TFs), including heat stress transcription factors (HSFs). HSFs play a crucial role in plants response to several abiotic stresses by regulating the expression of stress-responsive genes, such as heat shock proteins (Hsps). In this review, we describe the conserved structure of plant HSFs, the identification of HSF gene families from various plant species, their expression profiling under abiotic stress conditions, regulation at different levels and function in abiotic stresses. Despite plant HSFs share highly conserved structure, their remarkable diversification across plants reflects their numerous functions as well as their integration into the complex stress signaling and response networks, which can be employed in crop improvement strategies via biotechnological intervention.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...