Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 14(18)2021 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-34576451

RESUMEN

B4C/TiB2 ceramic composites reinforced with three size scales (average particle size: 7 µm, 500 nm, and 50 nm) of TiB2 were prepared by using a pressureless sintering furnace at 2100 °C under Ar atmosphere for 60 min. The results demonstrated that during the sintering process, TiB2 located on the boundaries between different B4C grains could inhibit the grain growth which improved the mass transport mechanism and sintering driving force. A semi-coherent interface between B4C and SiC was found, which is supposed to help to reduce the interface energy and obtain good mechanical properties of the B4C/TiB2 ceramic composite. On sample cooling from sintering temperature to room temperature, the residual tensile stress fields formed at the TiB2 interfaces owning to the thermo-elastico properties mismatched, which might have contributed to increase the ability of the sample to resist crack propagation. The results showed that the relative density, Vickers hardness, and fracture toughness of the composite with 20 wt.% submicron and 10 wt.% nano-TiB2 were significantly improved, which were 98.6%, 30.2 GPa, and 5.47 MPa·m1/2, respectively.

2.
Materials (Basel) ; 12(18)2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31514426

RESUMEN

Oblique ceramic armor structure composed of an oblique part and a backing part was designed to resist the ballistic impact of long rod penetrators. The front part consisted of an oblique silicon carbide ceramic and a triangular titanium alloy prism. The backing part contained layered silicon carbide and armor steel designed to absorb the residual energy of penetrators. The structure's response to penetration was examined experimentally by considering different impact locations on oblique targets. Numerical simulations of the experiments were performed to reproduce the penetration and failure processes that occurred in the armor modules. In addition, a simple layer structure with the identical line-of-sight thickness of each material used in the oblique impact was simulated under a normal impact. The rod and target performances with the oblique impact and normal impact were compared and analyzed in detail. The results showed that the oblique structure had a better ballistic performance as a result of an extra short dwell period before penetrating the ceramic in comparison with the normal layer case. The ability of the oblique targets to defeat long rod projectiles differed with the impact location on the ceramic. The present study paves the way for ceramic armor obliquity applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...