Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Adv Radiat Oncol ; 9(3): 101405, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38304111

RESUMEN

Purpose: Online adaptive radiation therapy (OART) uses daily imaging to identify changes in the patient's anatomy and generate a new treatment plan adapted to these changes for each fraction. The aim of this study was to determine the intrafraction motion and planning target volume (PTV) margins required for an OART workflow on the Varian Ethos system. Methods and Materials: Sixty-five fractions from 13 previously treated OART patients were analyzed for this retrospective study. The prostate and seminal vesicles were contoured by a radiation oncologist on 2 cone beam computed tomography scans (CBCT) for each fraction, the initial CBCT at the start of the treatment session, and the verification CBCT immediately before beam-on. In part 1 of the study, PTVs of different sizes were defined on the initial CBCT, and the geometric overlap with the clinical target volume (CTV) on the verification CBCT was used to determine the optimal OART margin. This was performed with and without a patient realignment shift by registering the verification CBCT to the initial CBCT. In part 2 of the study, the margins determined in part 1 were used for simulated Ethos OART treatments on all 65 fractions. The resultant coverage to the CTV on the verification CBCT, was compared with an image guided radiation therapy (IGRT) workflow with 7-mm margins. Results: Part 1 of the study found, if a verification CBCT and shift is performed, a 4-mm margin on the prostate and 5 mm on the seminal vesicles resulted in 95% of the CTV covered by the PTV in >90% of fractions, and 98% of the CTV covered by the PTV in >80% of fractions. Part 2 of the study found when these margins were used in an Ethos OART workflow, they resulted in CTV coverage that was superior to an IGRT workflow with 7-mm margins. Conclusions: A 4mm prostate margin and 5-mm seminal vesicles margin in an OART workflow with verification imaging are adequate to ensure coverage on the Varian Ethos system. Larger margins may be required if using an OART workflow without verification imaging.

2.
Knowl Based Syst ; 274: 110642, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37250528

RESUMEN

The COVID-19 pandemic has resulted in a surge of fake news, creating public health risks. However, developing an effective way to detect such news is challenging, especially when published news involves mixing true and false information. Detecting COVID-19 fake news has become a critical task in the field of natural language processing (NLP). This paper explores the effectiveness of several machine learning algorithms and fine-tuning pre-trained transformer-based models, including Bidirectional Encoder Representations from Transformers (BERT) and COVID-Twitter-BERT (CT-BERT), for COVID-19 fake news detection. We evaluate the performance of different downstream neural network structures, such as CNN and BiGRU layers, added on top of BERT and CT-BERT with frozen or unfrozen parameters. Our experiments on a real-world COVID-19 fake news dataset demonstrate that incorporating BiGRU on top of the CT-BERT model achieves outstanding performance, with a state-of-the-art F1 score of 98%. These results have significant implications for mitigating the spread of COVID-19 misinformation and highlight the potential of advanced machine learning models for fake news detection.

3.
Sensors (Basel) ; 23(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36850498

RESUMEN

Due to increasing demands for ensuring the safety and reliability of a system, fault detection (FD) has received considerable attention in modern industries to monitor their machines. Bulk materials are transported worldwide using belt conveyors as an essential transport system. The majority of conveyor components are monitored continuously to ensure their reliability, but idlers remain a challenge to monitor due to the large number of idlers (rollers) distributed throughout the working environment. These idlers are prone to external noises or disturbances that cause a failure in the underlying system operations. The research community has begun using machine learning (ML) to detect idler's defects to assist industries in responding to failures on time. Vibration and acoustic measurements are commonly employed to monitor the condition of idlers. However, there has been no comprehensive review of FD for belt conveyor idlers. This paper presents a recent review of acoustic and vibration signal-based fault detection for belt conveyor idlers using ML models. It also discusses major steps in the approaches, such as data collection, signal processing, feature extraction and selection, and ML model construction. Additionally, the paper provides an overview of the main components of belt conveyor systems, sources of defects in idlers, and a brief introduction to ML models. Finally, it highlights critical open challenges and provides future research directions.

4.
Diagnostics (Basel) ; 12(12)2022 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-36553145

RESUMEN

Schistosomiasis is a neglected tropical disease that continues to be a leading cause of illness and mortality around the globe. The causing parasites are affixed to the skin through defiled water and enter the human body. Failure to diagnose Schistosomiasis can result in various medical complications, such as ascites, portal hypertension, esophageal varices, splenomegaly, and growth retardation. Early prediction and identification of risk factors may aid in treating disease before it becomes incurable. We aimed to create a framework by incorporating the most significant features to predict Schistosomiasis using machine learning techniques. A dataset of advanced Schistosomiasis has been employed containing recovery and death cases. A total data of 4316 individuals containing recovery and death cases were included in this research. The dataset contains demographics, socioeconomic, and clinical factors with lab reports. Data preprocessing techniques (missing values imputation, outlier removal, data normalisation, and data transformation) have also been employed for better results. Feature selection techniques, including correlation-based feature selection, Information gain, gain ratio, ReliefF, and OneR, have been utilised to minimise a large number of features. Data resampling algorithms, including Random undersampling, Random oversampling, Cluster Centroid, Near miss, and SMOTE, are applied to address the data imbalance problem. We applied four machine learning algorithms to construct the model: Gradient Boosting, Light Gradient Boosting, Extreme Gradient Boosting and CatBoost. The performance of the proposed framework has been evaluated based on Accuracy, Precision, Recall and F1-Score. The results of our proposed framework stated that the CatBoost model showed the best performance with the highest accuracy of (87.1%) compared with Gradient Boosting (86%), Light Gradient Boosting (86.7%) and Extreme Gradient Boosting (86.9%). Our proposed framework will assist doctors and healthcare professionals in the early diagnosis of Schistosomiasis.

5.
Artículo en Inglés | MEDLINE | ID: mdl-36141457

RESUMEN

Pneumoconiosis is a group of occupational lung diseases induced by mineral dust inhalation and subsequent lung tissue reactions. It can eventually cause irreparable lung damage, as well as gradual and permanent physical impairments. It has affected millions of workers in hazardous industries throughout the world, and it is a leading cause of occupational death. It is difficult to diagnose early pneumoconiosis because of the low sensitivity of chest radiographs, the wide variation in interpretation between and among readers, and the scarcity of B-readers, which all add to the difficulty in diagnosing these occupational illnesses. In recent years, deep machine learning algorithms have been extremely successful at classifying and localising abnormality of medical images. In this study, we proposed an ensemble learning approach to improve pneumoconiosis detection in chest X-rays (CXRs) using nine machine learning classifiers and multi-dimensional deep features extracted using CheXNet-121 architecture. There were eight evaluation metrics utilised for each high-level feature set of the associated cross-validation datasets in order to compare the ensemble performance and state-of-the-art techniques from the literature that used the same cross-validation datasets. It is observed that integrated ensemble learning exhibits promising results (92.68% accuracy, 85.66% Matthews correlation coefficient (MCC), and 0.9302 area under the precision-recall (PR) curve), compared to individual CheXNet-121 and other state-of-the-art techniques. Finally, Grad-CAM was used to visualise the learned behaviour of individual dense blocks within CheXNet-121 and their ensembles into three-color channels of CXRs. We compared the Grad-CAM-indicated ROI to the ground-truth ROI using the intersection of the union (IOU) and average-precision (AP) values for each classifier and their ensemble. Through the visualisation of the Grad-CAM within the blue channel, the average IOU passed more than 90% of the pneumoconiosis detection in chest radiographs.


Asunto(s)
Enfermedades Pulmonares , Neumoconiosis , Algoritmos , Polvo , Humanos , Neumoconiosis/diagnóstico por imagen , Rayos X
6.
J Clin Med ; 11(18)2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36142989

RESUMEN

Globally, coal remains one of the natural resources that provide power to the world. Thousands of people are involved in coal collection, processing, and transportation. Particulate coal dust is produced during these processes, which can crush the lung structure of workers and cause pneumoconiosis. There is no automated system for detecting and monitoring diseases in coal miners, except for specialist radiologists. This paper proposes ensemble learning techniques for detecting pneumoconiosis disease in chest X-ray radiographs (CXRs) using multiple deep learning models. Three ensemble learning techniques (simple averaging, multi-weighted averaging, and majority voting (MVOT)) were proposed to investigate performances using randomised cross-folds and leave-one-out cross-validations datasets. Five statistical measurements were used to compare the outcomes of the three investigations on the proposed integrated approach with state-of-the-art approaches from the literature for the same dataset. In the second investigation, the statistical combination was marginally enhanced in the ensemble of multi-weighted averaging on a robust model, CheXNet. However, in the third investigation, the same model elevated accuracies from 87.80 to 90.2%. The investigated results helped us identify a robust deep learning model and ensemble framework that outperformed others, achieving an accuracy of 91.50% in the automated detection of pneumoconiosis.

7.
Diagnostics (Basel) ; 12(9)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36140516

RESUMEN

Efficient skin cancer detection using images is a challenging task in the healthcare domain. In today's medical practices, skin cancer detection is a time-consuming procedure that may lead to a patient's death in later stages. The diagnosis of skin cancer at an earlier stage is crucial for the success rate of complete cure. The efficient detection of skin cancer is a challenging task. Therefore, the numbers of skilful dermatologists around the globe are not enough to deal with today's healthcare. The huge difference between data from various healthcare sector classes leads to data imbalance problems. Due to data imbalance issues, deep learning models are often trained on one class more than others. This study proposes a novel deep learning-based skin cancer detector using an imbalanced dataset. Data augmentation was used to balance various skin cancer classes to overcome the data imbalance. The Skin Cancer MNIST: HAM10000 dataset was employed, which consists of seven classes of skin lesions. Deep learning models are widely used in disease diagnosis through images. Deep learning-based models (AlexNet, InceptionV3, and RegNetY-320) were employed to classify skin cancer. The proposed framework was also tuned with various combinations of hyperparameters. The results show that RegNetY-320 outperformed InceptionV3 and AlexNet in terms of the accuracy, F1-score, and receiver operating characteristic (ROC) curve both on the imbalanced and balanced datasets. The performance of the proposed framework was better than that of conventional methods. The accuracy, F1-score, and ROC curve value obtained with the proposed framework were 91%, 88.1%, and 0.95, which were significantly better than those of the state-of-the-art method, which achieved 85%, 69.3%, and 0.90, respectively. Our proposed framework may assist in disease identification, which could save lives, reduce unnecessary biopsies, and reduce costs for patients, dermatologists, and healthcare professionals.

8.
Med Dosim ; 47(4): 342-347, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36127189

RESUMEN

INTRODUCTION: The Ethos treatment planning system allows for the rapid generation of online adaptive treatment plans while the patient is on the treatment couch. One promising application of online adaptive radiotherapy is its use in stereotactic radiotherapy. The purpose of this study was to ensure the Ethos treatment planning system (TPS) can produce clinically acceptable stereotactic plans, that are non-inferior to those from the Eclipse TPS. METHOD: Forty patients that received previous stereotactic radiotherapy treatment on a Halcyon, 20 of which were lung cases, and 20 that were brain cases, were replanned using the Ethos TPS. The generated IMRT and VMAT plans were compared to the clinical Eclipse VMAT plan. RESULTS: This study found that the Ethos TPS can produce VMAT plans of equivalent quality (target coverage, conformity and OAR doses) to those from the Eclipse TPS for lung SBRT and brain SRT. The IMRT plans produced by the Ethos planning system were marginally inferior to Eclipse VMAT plans, with the differences likely primarily due to beam geometry rather than the optimization system. Ethos plans were generally more modulated than Eclipse plans. With careful selection of optimization structures and reduction in the body contour, VMAT plan generation time could be reduced by 87%. CONCLUSION: Ethos can generate stereotactic VMAT plans that are equivalent to those from Eclipse in the timeframe required for online adaptive radiotherapy.


Asunto(s)
Oncología por Radiación , Radiocirugia , Radioterapia de Intensidad Modulada , Humanos , Planificación de la Radioterapia Asistida por Computador , Dosificación Radioterapéutica , Órganos en Riesgo
9.
Plants (Basel) ; 11(15)2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35893629

RESUMEN

Tea (Camellia sinensis L.) is one of the most highly consumed beverages globally after water. Several countries import large quantities of tea from other countries to meet domestic needs. Therefore, accurate and timely prediction of tea yield is critical. The previous studies used statistical, deep learning, and machine learning techniques for tea yield prediction, but crop simulation models have not yet been used. However, the calibration of a simulation model for tea yield prediction and the comparison of these approaches is needed regarding the different data types. This research study aims to provide a comparative study of the methods for tea yield prediction using the Food and Agriculture Organization (FAO) of the United Nations AquaCrop simulation model and machine learning techniques. We employed weather, soil, crop, and agro-management data from 2016 to 2019 acquired from tea fields of the National Tea and High-Value Crop Research Institute (NTHRI), Pakistan, to calibrate the AquaCrop simulation model and to train regression algorithms. We achieved a mean absolute error (MAE) of 0.45 t/ha, a mean squared error (MSE) of 0.23 t/ha, and a root mean square error (RMSE) of 0.48 t/ha in the calibration of the AquaCrop model and, out of the ten regression models, we achieved the lowest MAE of 0.093 t/ha, MSE of 0.015 t/ha, and RMSE of 0.120 t/ha using 10-fold cross-validation and MAE of 0.123 t/ha, MSE of 0.024 t/ha, and RMSE of 0.154 t/ha using the XGBoost regressor with train test split. We concluded that the machine learning regression algorithm performed better in yield prediction using fewer data than the simulation model. This study provides a technique to improve tea yield prediction by combining different data sources using a crop simulation model and machine learning algorithms.

10.
Comput Math Methods Med ; 2022: 5154896, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35872945

RESUMEN

Multiple sclerosis (MS) is a chronic neurological disease of the central nervous system (CNS). Early diagnosis of MS is highly desirable as treatments are more effective in preventing MS-related disability when given in the early stages of the disease. The main aim of this research is to predict the occurrence of a second MS-related clinical event, which indicates the conversion of clinically isolated syndrome (CIS) to clinically definite MS (CDMS). In this study, we apply a branch of artificial intelligence known as deep learning and develop a fully automated algorithm primed with convolutional neural network (CNN) that has the ability to learn from MRI scan features. The basic architecture of our algorithm is that of the VGG16 CNN model, but amended such that it can handle MRI DICOM images. A dataset comprised of scans acquired using two different scanners was used for the purposes of verification of the algorithm. A group of 49 patients had volumetric MRI scans taken at onset of the disease and then again one year later using one of the two scanners. In total, this yielded 7360 images which were then used for training, validation, and testing of the algorithm. Initially, these raw images were taken through 4 steps of preprocessing. In order to boost the efficiency of the process, we pretrained our algorithm using the publicly available ADNI dataset used to classify Alzheimer's disease. Finally, we used our preprocessed dataset to train and test the algorithm. Clinical evaluation conducted a year after the first time point revealed that 26 of the 49 patients had converted to CDMS, while the remaining 23 had not. Results of testing showed that our algorithm was able to predict the clinical results with an accuracy of 88.8% and with an area under the curve (AUC) of 91%. A highly accurate algorithm was developed using CNN approach to reliably predict conversion of patients with CIS to CDMS using MRI data from two different scanners.


Asunto(s)
Esclerosis Múltiple , Algoritmos , Inteligencia Artificial , Humanos , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple/diagnóstico por imagen , Redes Neurales de la Computación
11.
Artículo en Inglés | MEDLINE | ID: mdl-35682023

RESUMEN

Computer-aided diagnostic (CAD) systems can assist radiologists in detecting coal workers' pneumoconiosis (CWP) in their chest X-rays. Early diagnosis of the CWP can significantly improve workers' survival rate. The development of the CAD systems will reduce risk in the workplace and improve the quality of chest screening for CWP diseases. This systematic literature review (SLR) amis to categorise and summarise the feature extraction and detection approaches of computer-based analysis in CWP using chest X-ray radiographs (CXR). We conducted the SLR method through 11 databases that focus on science, engineering, medicine, health, and clinical studies. The proposed SLR identified and compared 40 articles from the last 5 decades, covering three main categories of computer-based CWP detection: classical handcrafted features-based image analysis, traditional machine learning, and deep learning-based methods. Limitations of this review and future improvement of the review are also discussed.


Asunto(s)
Antracosis , Minas de Carbón , Neumoconiosis , Antracosis/diagnóstico por imagen , Carbón Mineral , Computadores , Humanos , Aprendizaje Automático , Neumoconiosis/diagnóstico por imagen , Rayos X
12.
Mult Scler ; 28(6): 849-858, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-33112207

RESUMEN

BACKGROUND: Computer-aided diagnosis can facilitate the early detection and diagnosis of multiple sclerosis (MS) thus enabling earlier interventions and a reduction in long-term MS-related disability. Recent advancements in the field of artificial intelligence (AI) have led to the improvements in the classification, quantification and identification of diagnostic patterns in medical images for a range of diseases, in particular, for MS. Importantly, data generated using AI techniques are analyzed automatically, which compares favourably with labour-intensive and time-consuming manual methods. OBJECTIVE: The aim of this review is to assist MS researchers to understand current and future developments in the AI-based diagnosis and prognosis of MS. METHODS: We will investigate a variety of AI approaches and various classifiers and compare the current state-of-the-art techniques in relation to lesion segmentation/detection and prognosis of disease. After briefly describing the magnetic resonance imaging (MRI) techniques commonly used, we will describe AI techniques used for the detection of lesions and MS prognosis. RESULTS: We then evaluate the clinical maturity of these AI techniques in relation to MS. CONCLUSION: Finally, future research challenges are identified in a bid to encourage further improvements of the methods.


Asunto(s)
Inteligencia Artificial , Esclerosis Múltiple , Ceguera , Diagnóstico por Computador , Humanos , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple/diagnóstico por imagen , Pronóstico
13.
Comput Biol Med ; 134: 104537, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34118752

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is one of the deadliest diseases in developed countries. Treatments following early AD detection can significantly delay institutionalisation and extend patients' independence. There has been a growing focus on early AD detection using artificial intelligence. Convolutional neural networks (CNNs) have proven revolutionary for image-based applications and have been applied to brain scans. In recent years, studies have utilised two-dimensional (2D) CNNs on magnetic resonance imaging (MRI) scans for AD detection. To apply a 2D CNN on three-dimensional (3D) MRI volumes, each MRI scan is split into 2D image slices. A CNN is trained over the image slices by calculating a loss function between each subject's label and each image slice's predicted output. Although 2D CNNs can discover spatial dependencies in an image slice, they cannot understand the temporal dependencies among 2D image slices in a 3D MRI volume. This study aims to resolve this issue by modelling the sequence of MRI features produced by a CNN with deep sequence-based networks for AD detection. METHOD: The CNN utilised in this paper was ResNet-18 pre-trained on an ImageNet dataset. The employed sequence-based models were the temporal convolutional network (TCN) and different types of recurrent neural networks. Several deep sequence-based models and configurations were implemented and compared for AD detection. RESULTS: Our proposed TCN model achieved the best classification performance with 91.78% accuracy, 91.56% sensitivity and 92% specificity. CONCLUSION: Our results show that applying sequence-based models can improve the classification accuracy of 2D and 3D CNNs for AD detection by up to 10%.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/diagnóstico por imagen , Inteligencia Artificial , Humanos , Imagen por Resonancia Magnética , Redes Neurales de la Computación , Neuroimagen
14.
J Med Imaging (Bellingham) ; 8(2): 024503, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33937437

RESUMEN

Purpose: Detection of Alzheimer's disease (AD) on magnetic resonance imaging (MRI) using convolutional neural networks (CNNs), which is useful for detecting AD in its preliminary states. Approach: Our study implements and compares several deep models and configurations, including two-dimensional (2D) and three-dimensional (3D) CNNs and recurrent neural networks (RNNs). To use a 2D CNN on 3D MRI volumes, each MRI scan is split into 2D slices, neglecting the connection among 2D image slices in an MRI volume. Instead, a CNN model could be followed by an RNN in a way that the model of 2D CNN + RNN can understand the connection among sequences of 2D image slices for an MRI. The issue is that the feature extraction step in the 2D CNN is independent of classification in the RNN. To tackle this, 3D CNNs can be employed instead of 2D CNNs to make voxel-based decisions. Our study's main contribution is to introduce transfer learning from a dataset of 2D images to 3D CNNs. Results: The results on our MRI dataset indicate that sequence-based decisions improve the accuracy of slice-based decisions by 2% in classifying AD patients from healthy subjects. Also the 3D voxel-based method with transfer learning outperforms the other methods with 96.88% accuracy, 100% sensitivity, and 94.12% specificity. Conclusions: Several implementations and experiments using CNNs on MRI scans for AD detection demonstrated that the voxel-based method with transfer learning from ImageNet to MRI datasets using 3D CNNs considerably improved the results compared with the others.

15.
Comput Biol Med ; 129: 104125, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33310394

RESUMEN

Early detection of pneumoconiosis in X-Rays has been a challenging task that leads to high inter- and intra-reader variability. Motivated by the success of deep learning in general and medical image classification, this paper proposes an approach to automatically detect pneumoconiosis using a deep feature based binary classifier. The features are extracted from X-rays using deep transfer learning, comprising both low and high-level feature sets. For this, a CNN model pre-trained with a transfer learning from a CheXNet model was initially used to extract deep features from the X-Ray images, then the deep features were mapped to higher-dimensional feature spaces for classification using Support Vector Machine (SVM) and CNN based feature aggregation methods. In order to cross validate the proposed method, the training and testing images were randomly split into three folds before each experiment. Nine evaluation metrics were employed to compare the performance of the proposed method and state-of-the-art methods from the literature that used the same datasets. The experimental results show that the proposed framework outperformed others, achieving an accuracy of 92.68% in the automated detection of pneumoconiosis.


Asunto(s)
Neumoconiosis , Humanos , Neumoconiosis/diagnóstico por imagen , Interpretación de Imagen Radiográfica Asistida por Computador , Radiografía , Máquina de Vectores de Soporte , Rayos X
16.
Data Brief ; 33: 106520, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33294517

RESUMEN

The year 2020 has changed the living style of people all around the world. Corona pandemic has affected the people in all fields of life economically, physically, and mentally. This dataset is a collection of published articles discussing the effect of COVID and SARS on the social sciences from 2003 to 2020. This dataset collection and analysis highlight the significance and influential aspects, research streams, and themes in this domain. The analysis provides top journals, highly cited articles, mostly used keywords, top affiliation institutes, leading countries based on the citation, potential research streams, a thematic map, and future directions in this area of research. In the future, this dataset will be helpful for every researcher and policymakers to proceed as a starting point to identify the relevant research based on the analysis of 18 years of research in this domain.

17.
Comput Methods Programs Biomed ; 187: 105242, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31837630

RESUMEN

Alzheimer's Disease (AD) is one of the leading causes of death in developed countries. From a research point of view, impressive results have been reported using computer-aided algorithms, but clinically no practical diagnostic method is available. In recent years, deep models have become popular, especially in dealing with images. Since 2013, deep learning has begun to gain considerable attention in AD detection research, with the number of published papers in this area increasing drastically since 2017. Deep models have been reported to be more accurate for AD detection compared to general machine learning techniques. Nevertheless, AD detection is still challenging, and for classification, it requires a highly discriminative feature representation to separate similar brain patterns. This paper reviews the current state of AD detection using deep learning. Through a systematic literature review of over 100 articles, we set out the most recent findings and trends. Specifically, we review useful biomarkers and features (personal information, genetic data, and brain scans), the necessary pre-processing steps, and different ways of dealing with neuroimaging data originating from single-modality and multi-modality studies. Deep models and their performance are described in detail. Although deep learning has achieved notable performance in detecting AD, there are several limitations, especially regarding the availability of datasets and training procedures.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Aprendizaje Profundo , Diagnóstico por Computador/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Neuroimagen , Algoritmos , Biomarcadores/metabolismo , Humanos , Redes Neurales de la Computación , Factores de Riesgo
18.
IEEE Access ; 8: 133377-133402, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-34812340

RESUMEN

Corona pandemic has affected the whole world, and it is a highly researched area in biological sciences. As the current pandemic has affected countries socially and economically, the purpose of this bibliometric analysis is to provide a holistic review of the corona pandemic in the field of social sciences. This study aims to highlight significant, influential aspects, research streams, and themes. We have reviewed 395 journal articles related to coronavirus in the field of social sciences from 2003 to 2020. We have deployed 'biblioshiny' a web-interface of the 'bibliometrix 3.0' package of R-studio to conduct bibliometric analysis and visualization. In the field of social sciences, we have reported influential aspects of coronavirus literature. We have found that the 'Morbidity and Mortality Weekly Report' is the top journal. The core article of coronavirus literature is 'Guidelines for preventing health-care-associated pneumonia'. The most commonly used word, in titles, abstracts, author's keywords, and keywords plus, is 'SARS'. Top affiliation is 'The University of Hong Kong'. Hong Kong is a leading country based on citations, and the USA is on top based on total publications. We have used a conceptual framework to identify potential research streams and themes in coronavirus literature. Four research streams are found by deploying a co-occurrence network. These research streams are 'Social and economic effects of epidemic disease', 'Infectious disease calamities and control', 'Outbreak of COVID 19,' and 'Infectious diseases and the role of international organizations'. Finally, a thematic map is used to provide a holistic understanding by dividing significant themes into basic or transversal, emerging or declining, motor, highly developed, but isolated themes. These themes and subthemes have proposed future directions and critical areas of research.

19.
IEEE J Biomed Health Inform ; 22(2): 516-524, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28166511

RESUMEN

Lung cancer is one of the most deadly diseases. It has a high death rate and its incidence rate has been increasing all over the world. Lung cancer appears as a solitary nodule in chest x-ray radiograph (CXR). Therefore, lung nodule detection in CXR could have a significant impact on early detection of lung cancer. Radiologists define a lung nodule in CXR as "solitary white nodule-like blob." However, the solitary feature has not been employed for lung nodule detection before. In this paper, a solitary feature-based lung nodule detection method was proposed. We employed stationary wavelet transform and convergence index filter to extract the texture features and used AdaBoost to generate white nodule-likeness map. A solitary feature was defined to evaluate the isolation degree of candidates. Both the isolation degree and the white nodule likeness were used as final evaluation of lung nodule candidates. The proposed method shows better performance and robustness than those reported in previous research. More than 80% and 93% of lung nodules in the lung field in the Japanese Society of Radiological Technology (JSRT) database were detected when the false positives per image were two and five, respectively. The proposed approach has the potential of being used in clinical practice.


Asunto(s)
Neoplasias Pulmonares/diagnóstico por imagen , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Tomografía Computarizada por Rayos X/métodos , Algoritmos , Humanos , Pulmón/diagnóstico por imagen
20.
Comput Methods Programs Biomed ; 113(3): 894-903, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24462387

RESUMEN

Digital X-ray images are the most frequent modality for both screening and diagnosis in hospitals. To facilitate subsequent analysis such as quantification and computer aided diagnosis (CAD), it is desirable to exclude image background. A marker-based watershed segmentation method was proposed to segment background of X-ray images. The method consisted of six modules: image preprocessing, gradient computation, marker extraction, watershed segmentation from markers, region merging and background extraction. One hundred clinical direct radiograph X-ray images were used to validate the method. Manual thresholding and multiscale gradient based watershed method were implemented for comparison. The proposed method yielded a dice coefficient of 0.964±0.069, which was better than that of the manual thresholding (0.937±0.119) and that of multiscale gradient based watershed method (0.942±0.098). Special means were adopted to decrease the computational cost, including getting rid of few pixels with highest grayscale via percentile, calculation of gradient magnitude through simple operations, decreasing the number of markers by appropriate thresholding, and merging regions based on simple grayscale statistics. As a result, the processing time was at most 6s even for a 3072×3072 image on a Pentium 4 PC with 2.4GHz CPU (4 cores) and 2G RAM, which was more than one time faster than that of the multiscale gradient based watershed method. The proposed method could be a potential tool for diagnosis and quantification of X-ray images.


Asunto(s)
Intensificación de Imagen Radiográfica/métodos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Algoritmos , Biología Computacional , Mano/diagnóstico por imagen , Humanos , Pierna/diagnóstico por imagen , Radiografía Torácica/estadística & datos numéricos , Diseño de Software
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA