Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
J Environ Manage ; 367: 122055, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39111008

RESUMEN

With the development of desertification in the Qinghai-Tibet Plateau (QTP), aeolian sand becomes the remarkable local factor affecting the thermal state of permafrost along the Qinghai-Tibet Engineering Corridor (QTEC). In this study, a model experiment was conducted to analyze the impact of thickness and water content of aeolian sand on its thermal effect, and a hydro-thermo-vapor coupling model of frozen soil was carried out to reveal the heat transfer mechanism of the aeolian sand layer (ASL) with different thicknesses and its hydrothermal effect on permafrost. The results indicate that: (1) ASL with the thickness larger than 80 cm has the property of converting precipitation into soil water. The thicker the ASL, the more precipitation infiltrates and accumulates in the soil layer. (2) The cooling effect of ASL on permafrost results from the lower net surface radiation, causing the annual average surface heat flux shifting from heat inflow to heat outflow. The warming effect of ASL on permafrost results from the increasing convective heat accompanying the infiltrated precipitation. (3) As the ASL thickens, the thermal effect of ASL on permafrost gradually shifts from the cooling effect dominated by heat radiation and heat conduction to the warming effect dominated by precipitation infiltration and heat convection. The warming effect of thick ASL on permafrost requires a certain amount of years to manifest, and the critical thickness is suggested to be larger than 120 cm.


Asunto(s)
Hielos Perennes , Tibet , Suelo/química , Calor
2.
Neurobiol Dis ; 200: 106627, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39111702

RESUMEN

An increasing number of people undergo anesthesia and surgery. Perioperative neurocognitive and depressive disorders are common central nervous system complications with similar pathogeneses. These conditions pose a deleterious threat to human health and a significant societal burden. In recent years, numerous studies have focused on the role of the gut microbiota and its metabolites in the central nervous system via the gut-brain axis. Its involvement in perioperative neurocognitive and depressive disorders has attracted considerable attention. This review aimed to elucidate the role of the gut microbiota and its metabolites in the pathogenesis of perioperative neurocognitive and depressive disorders, as well as the value of targeted interventions and treatments.

3.
J Mater Chem B ; 12(24): 5884-5897, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38775254

RESUMEN

Pancreatic cancer is an aggressive and highly fatal malignant tumor. Recent studies have shown that cancer stem cells (CSCs) play an important role in resisting current therapeutic modalities. Furthermore, CD133 is highly expressed in CSCs. High-intensity focused ultrasound (HIFU) is a promising non-invasive therapeutic strategy for unresectable pancreatic cancers. In our study, we synthesized targeted CD133 organosilane nanomicelles by encapsulating perfluorohexane (PFH). The CD133 antibody on the surface could specifically bind to CD133-positive pancreatic cancer cells and selectively concentrate in pancreatic cancer tumor tissues. PFH was introduced to improve the ablation effect of HIFU due to its liquid-gas phase transition properties. By combining with the dorsal skinfold window chamber model (DSWC) of pancreatic cancer in nude mice, multiphoton fluorescence microscopy was used to evaluate the targeting effect of nanomicelles on pancreatic cancer tumor tissue. These multifunctional nanomicelles synergistically affected HIFU treatment of pancreatic cancer, providing an integrated research platform for diagnosing and treating pancreatic cancer with HIFU.


Asunto(s)
Antígeno AC133 , Ultrasonido Enfocado de Alta Intensidad de Ablación , Ratones Desnudos , Micelas , Neoplasias Pancreáticas , Animales , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/terapia , Antígeno AC133/metabolismo , Ratones , Humanos , Línea Celular Tumoral , Fluorocarburos/química , Fluorocarburos/farmacología , Ratones Endogámicos BALB C , Nanopartículas/química
4.
Heliyon ; 10(10): e31403, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38803848

RESUMEN

The main component of O-glycoproteins, mucin, is known to play important roles in physiological conditions and oncogenic processes, particularly correlated with poor prognosis in different carcinomas. Diffuse-type gastric cancer (DGC) has long been associated with genomic stability and unfavorable clinical outcomes. To investigate further, we obtained clinical information and the RNA-seq data of the TCGA-STAD cohort. Through the use of unsupervised clustering methods and GSEA, we identified two distinct clusters, characterized by higher and lower expression of MUC2 and MUC20, denoted as cluster 1 and cluster 2, respectively. Subsequently, employing CIBERSORT, it was determined that cluster 2 exhibited a higher tumor mutation burden (TMB) and a greater abundance of CD8+ T cells and activated CD4+ memory T cells, in addition to immune checkpoints (ICPs). On the other hand, cluster 1 showed a lower TIDE score estimation, indicating a higher probability of tumor immune escape. Furthermore, overexpression of MUC15 and MUC20 was confirmed through qPCR and Western blotting, and their specific roles in mediating the epithelial-mesenchymal transition (EMT) process of GC cells (SNU484 and Hs746t) were validated via CCK-8 assay and wound healing assay in vitro. These findings highlight the potential prognostic value of MUC20 and offer insights into the prospects of immunotherapy for DGC by targeting MUC20.

5.
Cell Mol Life Sci ; 81(1): 138, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38478029

RESUMEN

Circular RNAs (circRNAs) have garnered significant attention in the field of neurodegenerative diseases including Alzheimer's diseases due to their covalently closed loop structure. However, the involvement of circRNAs in postoperative cognitive dysfunction (POCD) is still largely unexplored. To identify the genes differentially expressed between non-POCD (NPOCD) and POCD mice, we conducted the whole transcriptome sequencing initially in this study. According to the expression profiles, we observed that circAKT3 was associated with hippocampal neuronal apoptosis in POCD mice. Moreover, we found that circAKT3 overexpression reduced apoptosis of hippocampal neurons and alleviated POCD. Subsequently, through bioinformatics analysis, our data showed that circAKT3 overexpression in vitro and in vivo elevated the abundance of miR-106a-5p significantly, resulting in a decrease of HDAC4 protein and an increase of MEF2C protein. Additionally, this effect of circAKT3 was blocked by miR-106a-5p inhibitor. Interestingly, MEF2C could activate the transcription of miR-106a-5p promoter and form a positive feedback loop. Therefore, our findings revealed more potential modulation ways between circRNA-miRNA and miRNA-mRNA, providing different directions and targets for preclinical studies of POCD.


Asunto(s)
MicroARNs , Complicaciones Cognitivas Postoperatorias , Animales , Ratones , Complicaciones Cognitivas Postoperatorias/genética , ARN Circular/genética , Retroalimentación , MicroARNs/genética , MicroARNs/metabolismo , Hipocampo/metabolismo
6.
Stress ; 27(1): 2316050, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38377152

RESUMEN

Stress is a series of physical and psychological responses to external and internal environmental stimuli. Growing studies have demonstrated the detrimental impacts of acute restraint stress (ARS) and chronic restraint stress (CRS) on animal behavior. However, the related pathogenesis and therapeutic mechanisms remain unclear. Hence, the present study aimed to examine whether unfolded protein response (UPR) and Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 2 related factor 2 (Nrf2) pathway are associated with ARS- and CRS- induced abnormal behaviors of pain sensitivity and cognitive function. We here used four behavioral tests to evaluate pain sensitivity and cognitive function in ARS and CRS mice. CRS markedly decreased Paw Withdrawal Mechanical Threshold (PWMT) and Tail-flick Latency (TFL) scores, whereas ARS altered TFL but had no effect on PWMT scores. Additionally, CRS, but not ARS, significantly changed behaviors in nest building behavior and MWMT. Intriguingly, the expression of Keap1 and Nrf2 protein were decreased in the spinal cord and hippocampus in CRS mice, but not in ARS mice. Moreover, neither the ARS nor the CRS groups significantly differed from the control group in terms of endoplasmic reticulum stress (ERS). Taken together, this study demonstrated that CRS could induce abnormal pain sensitivity and cognitive function probably via Keap1/Nrf2 pathway in spinal cord and hippocampus. It is therefore likely that effective intervention of Keap1/Nrf2 pathway may contribute to preventing and treating hyperalgesia and cognitive dysfunction in CRS.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Estrés Psicológico , Ratones , Animales , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Psicológico/complicaciones , Estrés Psicológico/metabolismo , Estrés Oxidativo , Cognición , Dolor
7.
Cognition ; 245: 105738, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38340529

RESUMEN

Humans express volition by making voluntary choices which, relative to forced choices, can motivate cognitive performance in a variety of tasks. However, a task that requires the generation of motor responses on the basis of external sensory stimulation involves complex underlying cognitive processes, e.g., pre-response processing, response selection, and response execution. The present study investigated how these underlying processes are facilitated by voluntary choice-making. In five experiments, participants were free or forced to choose a task-irrelevant picture from two alternatives, and then completed a conflict task, i.e., Flanker, Stroop, Simon, Stroop-Simon, or Flanker-Simon task, where the conflict effect could occur at different processing levels. Results consistently showed that responses in all tasks were generally faster after voluntary (vs. forced) choices. Importantly, the conflict effect at the response-execution level (i.e., the Simon effect), but not the conflict effect at the pre-response and response-selection levels (i.e., the Flanker and Stroop effects), was reduced by the voluntary choice-making. Model fitting revealed that the peak amplitude of automatic motor activations in the response-execution conflict was smaller after voluntary (vs. forced) choices. These findings suggest that volition motivates subsequent cognitive performance at the response-execution level by attenuating task-irrelevant motor activations.


Asunto(s)
Cognición , Volición , Humanos , Tiempo de Reacción/fisiología , Test de Stroop , Cognición/fisiología
8.
Ecotoxicol Environ Saf ; 271: 115991, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38237395

RESUMEN

Heavy metal toxicity is a significant global health concern, with particular attention given to lead (Pb) exposure due to its adverse effects on cognitive development, especially in children exposed to low concentrations. While Pb neurotoxicity has been extensively studied, the analysis and molecular mechanisms underlying the transgenerational effects of Pb exposure-induced neurotoxicity remain poorly understood. In this study, we utilized Drosophila, a powerful developmental animal model, to investigate this phenomenon. Our findings demonstrated that Pb exposure during the developmental stage had a profound effect on the neurodevelopment of F0 fruit flies. Specifically, we observed a loss of correlation between the terminal motor area and muscle fiber area, along with an increased frequency of the ß-lobe midline crossing phenotype in mushroom bodies. Western blot analysis indicated altered expression levels of synaptic vesicle proteins, with a decrease in Synapsin (SYN) and an increase in Bruchpilot (BRP) expression, suggesting changes in synaptic vesicle release sites. These findings were corroborated by electrophysiological data, showing an increase in the amplitude of evoked excitatory junctional potential (EJP) and an increase in the frequency of spontaneous excitatory junctional potential (mEJP) following Pb exposure. Importantly, our results further confirmed that the developmental neurotoxicity resulting from grandparental Pb exposure exhibited a transgenerational effect. The F3 offspring displayed neurodevelopmental defects, synaptic function abnormalities, and repetitive behavior despite lacking direct Pb exposure. Our MeDIP-seq analysis further revealed significant alterations in DNA methylation levels in several neurodevelopmental associated genes (eagle, happyhour, neuroglian, bazooka, and spinophilin) in the F3 offspring exposed to Pb. These findings suggest that DNA methylation modifications may underlie the inheritance of acquired phenotypic traits resulting from environmental Pb exposure.


Asunto(s)
Drosophila melanogaster , Síndromes de Neurotoxicidad , Animales , Niño , Humanos , Plomo/metabolismo , Metilación de ADN , Síndromes de Neurotoxicidad/genética , Genoma
9.
Int J Surg ; 110(2): 873-883, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37921644

RESUMEN

BACKGROUND: The association between malnutrition and postoperative acute kidney injury (AKI) has not been well studied. In this study, the authors examined the association between preoperative nutritional status and postoperative AKI in older patients who underwent major abdominal surgery, as well as the predictive value of malnutrition for AKI. MATERIALS AND METHODS: The authors retrospectively included patients aged 65 or older who underwent major elective abdominal surgery. The nutritional status of the patient was evaluated using three objective nutritional indices, such as the geriatric nutritional risk index (GNRI), the prognostic nutritional index (PNI), and the controlling nutritional status (CONUT). AKI was determined using the KDIGO criteria. The authors performed logistic regression analysis to investigate the association between preoperative nutritional status and postoperative AKI, as well as the predictive value of nutritional scores for postoperative AKI. RESULTS: A total of 2775 patients were included in the study, of which 707 (25.5%), 291 (10.5%), and 517 (18.6%) had moderate to severe malnutrition according to GNRI, PNI, and CONUT calculations. After surgery, 144 (5.2%) patients developed AKI, 86.1% at stage 1, 11.1% at stage 2, and 2.8% at stage 3 as determined by KDIGO criteria. After adjustment for traditional risk factors, worse nutritional scores were associated with a higher AKI risk. In addition to traditional risk factors, these nutritional indices improved the predictive ability of AKI prediction models, as demonstrated by significant improvements in integrated discrimination and net reclassification. CONCLUSIONS: Poor preoperative nutritional status, as assessed by GNRI, PNI, and CONUT scores, was associated with an increased risk of postoperative AKI. Incorporating these scores into AKI prediction models improved their performance. These findings emphasize the need for screening surgical patients for malnutrition risk. Further research is needed to determine whether preoperative malnutrition assessment and intervention can reduce postoperative AKI incidence.


Asunto(s)
Lesión Renal Aguda , Desnutrición , Humanos , Anciano , Estado Nutricional , Pronóstico , Estudios Retrospectivos , Desnutrición/diagnóstico , Desnutrición/epidemiología , Desnutrición/complicaciones , Factores de Riesgo , Lesión Renal Aguda/diagnóstico , Lesión Renal Aguda/epidemiología , Lesión Renal Aguda/etiología
10.
Psychon Bull Rev ; 31(1): 340-352, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37620630

RESUMEN

It has been shown that cognitive performance could be improved by expressing volition (e.g., making voluntary choices), which necessarily involves the execution of action through a certain effector. However, it is unclear if the benefit of expressing volition can generalize across different effectors. In the present study, participants made a choice between two pictures either voluntarily or forcibly, and subsequently completed a visual search task with the chosen picture as a task-irrelevant background. The effector for choosing a picture could be the hand (pressing a key), foot (pedaling), mouth (commanding), or eye (gazing), whereas the effector for responding to the search target was always the hand. Results showed that participants responded faster and had a more liberal response criterion in the search task after a voluntary choice (vs. a forced choice). Importantly, the improved performance was observed regardless of which effector was used in making the choice, and regardless of whether the effector for making choices was the same as or different from the effector for responding to the search target. Eye-movement data for oculomotor choice showed that the main contributor to the facilitatory effect of voluntary choice was the post-search time in the visual search task (i.e., the time spent on processes after the target was found, such as response selection and execution). These results suggest that the expression of volition may involve the motor control system in which the effector-general, high-level processing of the goal of the voluntary action plays a key role.


Asunto(s)
Motivación , Volición , Humanos , Volición/fisiología , Movimientos Oculares , Desempeño Psicomotor/fisiología
11.
Psychol Res ; 88(2): 404-416, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37498337

RESUMEN

Reward motivates goal-directed behaviors, leading to faster reaction time (RT) and lower error rate in searching for a target in the reward condition than in the no-reward condition in target-discrimination tasks. However, it is unclear how reward influences target detection in which participants are required to judge whether a predesignated target is present or absent. Here, we asked participants to complete a target-detection search task in which the color of the search array indicated the reward availability of the current trial. Correct and faster (than a baseline) responses would be rewarded if the search array had the reward-related color. In Experiments 1A and 1B, the target was presented in 50% of the trials. Experiment 1B had the same design as Experiment 1A, except that different baselines were set for the target-present and target-absent conditions. In Experiment 2, the proportion of target presence was manipulated to be high (80%), moderate (50%), or low (20%) in different blocks of stimuli. Results showed that, across all the experiments, participants responded faster and made fewer errors in the reward than in the no-reward condition when the target was present. However, this facilitatory effect was reversed when the target was absent, showcasing a reward-induced interference. The signal detection analysis suggested that reward biased the report criterion to the "yes" response. These findings demonstrate that the impact of reward on goal-directed behavior can be detrimental and reward prolongs the search process by rendering participants reluctant to say "no" in visual search termination.


Asunto(s)
Recompensa , Humanos , Tiempo de Reacción/fisiología
12.
Nutrients ; 15(23)2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38068773

RESUMEN

As the global population ages, the prevalence of neurodegenerative diseases is surging. These disorders have a multifaceted pathogenesis, entwined with genetic and environmental factors. Emerging research underscores the profound influence of diet on the development and progression of health conditions. Intermittent fasting (IF), a dietary pattern that is increasingly embraced and recommended, has demonstrated potential in improving neurophysiological functions and mitigating pathological injuries with few adverse effects. Although the precise mechanisms of IF's beneficial impact are not yet completely understood, gut microbiota and their metabolites are believed to be pivotal in mediating these effects. This review endeavors to thoroughly examine current studies on the shifts in gut microbiota and metabolite profiles prompted by IF, and their possible consequences for neural health. It also highlights the significance of dietary strategies as a clinical consideration for those with neurological conditions.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Neurodegenerativas , Humanos , Ayuno Intermitente , Microbioma Gastrointestinal/fisiología , Dieta
13.
Curr Med Chem ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37936459

RESUMEN

BACKGROUND: Head and neck squamous cell carcinoma (HNSC) is the seventh most common cancer worldwide. Although there are several options for the treatment of HNSC, there is still a lack of better biomarkers to accurately predict the response to treatment and thus be more able to correctly treat the therapeutic modality. METHODS: First, we typed cases from the TCGA-HNSC cohort into subtypes by a Bayesian non-negative matrix factorization (BayesNMF)-based consensus clustering approach. Subsequently, genomic and proteomic data from HNSC cell lines were integrated to identify biomarkers of response to targeted therapies and immunotherapies. Finally, associations between HNSC subtypes and CD8 T-cell-associated effector molecules, common immune checkpoint genes, were compared to assess the potential of HNSC subtypes as clinically predictive immune checkpoint blockade therapy. RESULTS: The 500 HNSC cases from TCGA were put through a consensus clustering approach to identify six HNSC expression subtypes. In addition, subtypes with unique proteomics and dependency profiles were defined based on HNSC cell line histology and proteomics data. Subtype 4 (S4) exhibits hyperproliferative and hyperimmune properties, and S4-associated cell lines show specific vulnerability to ADAT2, EIF5AL1, and PAK2. PD-L1 and CASP1 inhibitors have therapeutic potential in S4, and we have also demonstrated that S4 is more responsive to immune checkpoint blockade therapy. CONCLUSION: Overall, our HNSC typing approach identified robust tumor-expressing subtypes, and data from multiple screens also revealed subtype-specific biology and vulnerabilities. These HNSC expression subtypes and their biomarkers will help develop more effective therapeutic strategies.

14.
J Pharm Anal ; 13(9): 1070-1079, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37842652

RESUMEN

Pheretima, also called "earthworms", is a well-known animal-derived traditional Chinese medicine that is extensively used in over 50 Chinese patent medicines (CPMs) in Chinese Pharmacopoeia (2020 edition). However, its zoological origin is unclear, both in the herbal market and CPMs. In this study, a strategy for integrating in-house annotated protein databases constructed from close evolutionary relationship-sourced RNA sequencing data from public archival resources and various sequencing algorithms (restricted search, open search, and de novo) was developed to characterize the phenotype of natural peptides of three major commercial species of Pheretima, including Pheretima aspergillum (PA), Pheretima vulgaris (PV), and Metaphire magna (MM). We identified 10,477 natural peptides in the PA, 7,451 in PV, and 5,896 in MM samples. Five specific signature peptides were screened and then validated using synthetic peptides; these demonstrated robust specificity for the authentication of PA, PV, and MM. Finally, all marker peptides were successfully applied to identify the zoological origins of Brain Heart capsules and Xiaohuoluo pills, revealing the inconsistent Pheretima species used in these CPMs. In conclusion, our integrated strategy could be used for the in-depth characterization of natural peptides of other animal-derived traditional Chinese medicines, especially non-model species with poorly annotated protein databases.

15.
Biomedicines ; 11(9)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37760916

RESUMEN

Astrocytes, the most abundant cells in the brain, are integral to sleep regulation. In the context of a healthy neural environment, these glial cells exert a profound influence on the sleep-wake cycle, modulating both rapid eye movement (REM) and non-REM sleep phases. However, emerging literature underscores perturbations in astrocytic function as potential etiological factors in sleep disorders, either as protopathy or comorbidity. As known, sleep disorders significantly increase the risk of neurodegenerative, cardiovascular, metabolic, or psychiatric diseases. Meanwhile, sleep disorders are commonly screened as comorbidities in various neurodegenerative diseases, epilepsy, and others. Building on existing research that examines the role of astrocytes in sleep disorders, this review aims to elucidate the potential mechanisms by which astrocytes influence sleep regulation and contribute to sleep disorders in the varied settings of brain diseases. The review emphasizes the significance of astrocyte-mediated mechanisms in sleep disorders and their associated comorbidities, highlighting the need for further research.

16.
Front Pharmacol ; 14: 1215996, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37587982

RESUMEN

Introduction: As a traditional Chinese medicine, Abelmoschus manihot (L.) in the form of Huangkui (HK) capsule has been used as a medication for kidney diseases, including diabetic nephropathy (DN), in China. The most significant effect of HK capsule treatment in kidney diseases is the reduction of albuminuria and proteinuria. To evaluate the efficacy of HK capsule in the regression of DN, in the current study, we analyzed the biomarkers in the glomerulus and proximal and distal convoluted tubules in the kidneys of db/db mice, the animal model for type 2 diabetes and DN. Methods: Huangkui capsules (0.84 g/kg/d) or vehicle were administered daily via oral gavage for 4 weeks in db/db mice. Urinary albumin-to-creatinine ratio and blood glucose levels were measured during the whole experimental period. Five biomarkers in the glomerulus and proximal and distal convoluted tubules in the kidneys were selected, namely, col4a3, slc5a2, slc34a1, slc12a3, and slc4a1, and their activities at mRNA and protein levels before and after HK capsule treatment were analyzed by real-time RT-PCR and immunohistochemistry. Result and discussion: After HK capsule treatment for 4 weeks, the urinary albumin-to-creatinine ratio in db/db mice was found to be significantly decreased. The activities of col4a3, slc5a2, slc34a1, slc12a3, and slc4a1 in the kidneys were upregulated in db/db mice prior to the treatment but downregulated after HK capsule treatment. Further analyses of the fields of whole kidney tissue sections demonstrated that the number of nephrons in the kidneys of db/db mice with HK capsule treatment was higher than that in the kidneys of db/db mice without HK capsule treatment. Thereby, the current study provides experimental evidence confirming the medical efficacy of A. manihot in the reduction of albuminuria and proteinuria, suggesting that A. manihot may have pharmacological efficacy in the regression of the development of type 2 diabetes-DN.

17.
Front Cell Neurosci ; 17: 1188306, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37435045

RESUMEN

Sleep plays an essential role in all studied animals with a nervous system. However, sleep deprivation leads to various pathological changes and neurobehavioral problems. Astrocytes are the most abundant cells in the brain and are involved in various important functions, including neurotransmitter and ion homeostasis, synaptic and neuronal modulation, and blood-brain barrier maintenance; furthermore, they are associated with numerous neurodegenerative diseases, pain, and mood disorders. Moreover, astrocytes are increasingly being recognized as vital contributors to the regulation of sleep-wake cycles, both locally and in specific neural circuits. In this review, we begin by describing the role of astrocytes in regulating sleep and circadian rhythms, focusing on: (i) neuronal activity; (ii) metabolism; (iii) the glymphatic system; (iv) neuroinflammation; and (v) astrocyte-microglia cross-talk. Moreover, we review the role of astrocytes in sleep deprivation comorbidities and sleep deprivation-related brain disorders. Finally, we discuss potential interventions targeting astrocytes to prevent or treat sleep deprivation-related brain disorders. Pursuing these questions would pave the way for a deeper understanding of the cellular and neural mechanisms underlying sleep deprivation-comorbid brain disorders.

18.
Food Chem ; 426: 136670, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37354578

RESUMEN

The composition and quantity of amino acids (AAs) in seeds are complicated due to the various origins and modifications of different species. In this study, a novel automatic neutral loss filtering (ANLF) strategy based on accurate mass searching by Python was developed to analyze the free and hydrolyzed AA-phenyl isothiocyanate (PITC) derivatives from seeds of Gymnosperm and Angiosperm phyla. Compared with traditional strategies, ANLF showed much higher accuracy in screening AA derivatives by filtering nitrogen-containing non-AA compounds and efficiency in processing large datasets. Meanwhile, the content phenotype of 20 proteinogenic AAs from seeds of these two families was characterized by a 35-min HPLC method combined with an automated peak-matching strategy. AA profiles of 232 batches of seeds from 67 species, consisting of 19 proteinogenic AAs, 21 modified AAs, and 77 unknown AAs, would be a good reference for their application in food and medicine.


Asunto(s)
Cycadopsida , Magnoliopsida , Semillas , Semillas/química , Aminoácidos/análisis , Magnoliopsida/química , Cycadopsida/química , Filogenia , Cromatografía Líquida de Alta Presión , Espectrometría de Masas
19.
Anal Bioanal Chem ; 415(14): 2795-2807, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37133542

RESUMEN

Animal-derived drugs are an indispensable part of folk medicine worldwide. However, their chemical constituents are poorly approached, which leads to the low level of the quality standard system of animal-derived drugs and further causes a chaotic market. Natural peptides are ubiquitous throughout the organism, especially in animal-derived drugs. Thus, in this study, we used multi-source leeches, including Hirudo nipponica (HN), Whitmania pigra (WP), Whitmania acranulata (WA), and Poecilobdella manillensis (PM), as a model. A strategy integrating proteogenomics and novel pseudotargeted peptidomics was developed to characterize the natural peptide phenotype and screen for signature peptides of four leech species. First, natural peptides were sequenced against an in-house annotated protein database of closely related species constructed from RNA-seq data from the Sequence Read Archive (SRA) website, which is an open-sourced public archive resource. Second, a novel pseudotargeted peptidomics integrating peptide ion pair extraction and retention time transfer was established to achieve high coverage and quantitative accuracy of the natural peptides and to screen for signature peptides for species authentication. In all, 2323 natural peptides were identified from four leech species whose databases were poorly annotated. The strategy was shown to significantly improve peptide identification. In addition, 36 of 167 differential peptides screened by pseudotargeted proteomics were identified, and about one-third of them came from the leucine-rich repeat domain (LRR) proteins, which are widely distributed in organisms. Furthermore, six signature peptides were screened with good specificity and stability, and four of them were validated by synthetic standards. Finally, a dynamic multiple reaction monitoring (dMRM) method based on these signature peptides was established and revealed that one-half of the commercial samples and all of the Tongxinluo capsules were derived from WP. All in all, the strategy developed in this study was effective for natural peptide characterization and signature peptide screening, which could also be applied to other animal-derived drugs, especially for modelless species that are less studied in protein database annotation.


Asunto(s)
Sanguijuelas , Proteogenómica , Animales , Sanguijuelas/química , Sanguijuelas/genética , Péptidos/química , Proteómica
20.
J Agric Food Chem ; 71(14): 5851-5860, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37010496

RESUMEN

In this study, a novel pseudo-targeted peptidomics strategy, integrating the transition list generated by an in-house software (Pep-MRMer) and the retention time transfer by high-abundance ion-based retention time calibration (HAI-RT-cal), was developed to screen marker peptides of gelatins from five closely related animal species, including porcine, bovine, horse, mule, and donkey. Five marker peptides were screened from the molecular phenotypic differences of type I collagen. Furthermore, a simple and robust 10 min multiple reaction monitoring (MRM) method was established and performed well in distinguishing different gelatins, particularly in discerning horse-hide gelatin (HHG) and mule-hide gelatin (MHG) from donkey-hide gelatin (DHG). The market investigation revealed the serious adulteration of DHG. Meantime, the pseudo-targeted peptidomics could be used to screen marker peptides of other gelatin foods.


Asunto(s)
Colágeno Tipo I , Gelatina , Caballos , Animales , Bovinos , Porcinos , Gelatina/química , Péptidos/química , Espectrometría de Masas/métodos , Equidae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...