Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 12(21)2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37960118

RESUMEN

Soil management systems can directly interfere with crop yield via changes in the soil's physical and hydraulic properties. However, short- to medium-term experiments of conduction do not always demonstrate the modifications of the management systems in these properties. Thus, the aim of this study was to evaluate the physical properties of the soil in a long-term management system and to relate it to the storage and availability of water to plants, verifying its effect on soybean yield. The experiment was conducted in randomized blocks in a split-plot scheme with four replications. Plots were composed by soil management (conventional tillage and no-tillage), and subplots represented three soil depths (0.0-0.1, 0.1-0.2, and 0.2-0.4 m). The soil's physical and hydraulic properties, root development, and soybean yield were evaluated. The no-tillage system not only presented higher bulk density and soil resistance to compaction up to a depth of 0.2 m but also greater root development. This management also did not affect the process of water infiltration in the soil and presented an increase in soybean grain yield by 6.5%. The long-term no-tillage system (33 years) offers less risk of water stress to soybean plants; it contributes to greater grain yield of this crop when compared to the conventional tillage system.

2.
Plants (Basel) ; 11(19)2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36235523

RESUMEN

No-tillage cover crops contribute to better soil quality, being able to replace mechanized tillage management. This observation can only be made after several years of adopting conservationist practices and through research on soil-plant relationships. The objective of the research was to verify the relationship between the production components, physiological, root development, and physical-hydric properties of the soil in the yield of soybean grown in succession to different cover crops or with soil chiseling. The experiment was carried out in a randomized block design with four replications, comparing the cultivation of sunn hemp (Crotalaria juncea) and millet (Penninsetum glaucum L.) as cover crops and a treatment with soil chiseling. The evaluations were carried out during soybean (Glycine max L.) cultivation in the 2019/20 summer crop, that is, after 17 years of experimenting started in 2003. Rotation with sunn hemp increased soybean yield by 6% and 10%, compared with millet rotation and soil chiseling. The species used in crop rotation in a long-term no-tillage system interfere with the physical and water characteristics of the soil, affecting the physiological responses and soybean yield. The rotation with sunn hemp offers greater water stability to the plants and provides greater soybean yield in succession. Future research that better addresses year-to-year variation, architecture, and continuity of pores provided by crop rotation, and evaluations of gas exchange, fluorescence, and activities of stress enzymes in soybean plants may contribute to a better understanding of soil-plant relationships in long-term no-till.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA