Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurotrauma ; 41(13-14): 1550-1564, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38468502

RESUMEN

Cerebral microdialysis (CMD) catheters allow continuous monitoring of patients' cerebral metabolism in severe traumatic brain injury (TBI). The catheters consist of a terminal semi-permeable membrane that is inserted into the brain's interstitium to allow perfusion fluid to equalize with the surrounding cerebral extracellular environment before being recovered through a central non-porous channel. However, it is unclear how far recovered fluid and suspended metabolites have diffused from within the brain, and therefore what volume or region of brain tissue the analyses of metabolism represent. We assessed diffusion of the small magnetic resonance (MR)-detectible molecule gadobutrol from microdialysis catheters in six subjects (complete data five subjects, incomplete data one subject) who had sustained a severe TBI. Diffusion pattern and distance in cerebral white matter were assessed using T1 (time for MR spin-lattice relaxation) maps at 1 mm isotropic resolution in a 3 Tesla MR scanner. Gadobutrol at 10 mmol/L diffused from cerebral microdialysis catheters in a uniform spheroidal (ellipsoid of revolution) pattern around the catheters' semipermeable membranes, and across gray matter-white matter boundaries. Evidence of gadobutrol diffusion was found up to a mean of 13.4 ± 0.5 mm (mean ± standard deviation [SD]) from catheters, but with a steep concentration drop off so that ≤50% of maximum concentration was achieved at ∼4 mm, and ≤10% of maximum was found beyond ∼7 mm from the catheters. There was little variation between subjects. The relaxivity of gadobutrol in human cerebral white matter was estimated to be 1.61 ± 0.38 L.mmol-1sec-1 (mean ± SD); assuming gadobutrol remained extracellular thereby occupying 20% of total tissue volume (interstitium), and concentration equilibrium with perfusion fluid was achieved immediately adjacent to catheters after 24 h of perfusion. No statistically significant change was found in the concentration of the extracellular metabolites glucose, lactate, pyruvate, nor the lactate/pyruvate ratio during gadobutrol perfusion when compared with period of baseline microdialysis perfusion. Cerebral microdialysis allows continuous monitoring of regional cerebral metabolism-the volume of which is now clearer from this study. It also has the potential to deliver small molecule therapies to focal pathologies of the human brain. This study provides a platform for future development of new catheters optimally designed to treat such conditions.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Imagen por Resonancia Magnética , Microdiálisis , Compuestos Organometálicos , Humanos , Microdiálisis/métodos , Microdiálisis/instrumentación , Masculino , Adulto , Femenino , Imagen por Resonancia Magnética/métodos , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Persona de Mediana Edad , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Adulto Joven , Difusión , Medios de Contraste , Catéteres
2.
Neuroimage Clin ; 36: 103253, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36451358

RESUMEN

Human coronavirus disease 2019 (COVID-19) due to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has multiple neurological consequences, but its long-term effect on brain health is still uncertain. The cerebrovascular consequences of COVID-19 may also affect brain health. We studied the chronic effect of COVID-19 on cerebrovascular health, in relation to acute severity, adverse clinical outcomes and in contrast to control group data. Here we assess cerebrovascular health in 45 patients six months after hospitalisation for acute COVID-19 using the resting state fluctuation amplitudes (RSFA) from functional magnetic resonance imaging, in relation to disease severity and in contrast with 42 controls. Acute COVID-19 severity was indexed by COVID-19 WHO Progression Scale, inflammatory and coagulatory biomarkers. Chronic widespread changes in frontoparietal RSFA were related to the severity of the acute COVID-19 episode. This relationship was not explained by chronic cardiorespiratory dysfunction, age, or sex. The level of cerebrovascular dysfunction was associated with cognitive, mental, and physical health at follow-up. The principal findings were consistent across univariate and multivariate approaches. The results indicate chronic cerebrovascular impairment following severe acute COVID-19, with the potential for long-term consequences on cognitive function and mental wellbeing.


Asunto(s)
COVID-19 , Humanos , COVID-19/complicaciones , SARS-CoV-2 , Estudios Prospectivos , Encéfalo , Imagen por Resonancia Magnética
3.
Radiology ; 283(1): 215-221, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27849434

RESUMEN

Purpose To explore the diffusion-tensor (DT) imaging-defined invasive phenotypes of both isocitrate dehydrogenase (IDH-1)-mutated and IDH-1 wild-type glioblastomas. Materials and Methods Seventy patients with glioblastoma were prospectively recruited and imaged preoperatively. All patients provided signed consent, and the local research ethics committee approved the study. Patients underwent surgical resection, and tumor samples underwent immunohistochemistry for IDH-1 R132H mutations. DT imaging data were coregistered to the anatomic magnetic resonance study and reconstructed to provide the anisotropic and isotropic components of the DT. The invasive phenotype was determined by using previously published criteria and correlated with IDH-1 mutation status by using the Freeman-Halton extension of the Fisher exact probability test. Results Nine patients had an IDH-1 mutation and 61 had IDH-1 wild type. All of the patients with IDH-1 mutation had a minimally invasive DT imaging phenotype. Among the IDH-1 wild-type tumors, 42 of 61 (69%) were diffusively invasive glioblastomas, 14 of 61 (23%) were locally invasive, and five of 61 (8%) were minimally invasive (P < .001). Conclusion IDH-mutated glioblastomas have a less invasive phenotype compared with IDH wild type. This finding may have implications for individualizing the extent of surgical resection and radiation therapy volumes.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/genética , Imagen de Difusión Tensora , Glioblastoma/diagnóstico por imagen , Glioblastoma/genética , Isocitrato Deshidrogenasa/genética , Imagen por Resonancia Magnética , Adulto , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Estudios Prospectivos , Adulto Joven
4.
J Magn Reson Imaging ; 43(2): 487-94, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26140696

RESUMEN

PURPOSE: To use perfusion and magnetic resonance (MR) spectroscopy to compare the diffusion tensor imaging (DTI)-defined invasive and noninvasive regions. Invasion of normal brain is a cardinal feature of glioblastomas (GBM) and a major cause of treatment failure. DTI can identify invasive regions. MATERIALS AND METHODS: In all, 50 GBM patients were imaged preoperatively at 3T with anatomic sequences, DTI, dynamic susceptibility perfusion MR (DSCI), and multivoxel spectroscopy. The DTI and DSCI data were coregistered to the spectroscopy data and regions of interest (ROIs) were made in the invasive (determined by DTI), noninvasive regions, and normal brain. Values of relative cerebral blood volume (rCBV), N-acetyl aspartate (NAA), myoinositol (mI), total choline (Cho), and glutamate + glutamine (Glx) normalized to creatine (Cr) and Cho/NAA were measured at each ROI. RESULTS: Invasive regions showed significant increases in rCBV, suggesting angiogenesis (invasive rCBV 1.64 [95% confidence interval, CI: 1.5-1.76] vs. noninvasive 1.14 [1.09-1.18]; P < 0.001), Cho/Cr (invasive 0.42 [0.38-0.46] vs. noninvasive 0.35 [0.31-0.38]; P = 0.02) and Cho/NAA (invasive 0.54 [0.41-0.68] vs. noninvasive 0.37 [0.29-0.45]; P = < 0.03), suggesting proliferation, and Glx/Cr (invasive 1.54 [1.27-1.82] vs. noninvasive 1.3 [1.13-1.47]; P = 0.028), suggesting glutamate release; and a significantly reduced NAA/Cr (invasive 0.95 [0.85-1.05] vs. noninvasive 1.19 [1.06-1.31]; P = 0.008). The mI/Cr was not different between the three ROIs (invasive 1.2 [0.99-1.41] vs. noninvasive 1.3 [1.14-1.46]; P = 0.68). In the noninvasive regions, the values were not different from normal brain. CONCLUSION: Combining DTI to identify the invasive region with perfusion and spectroscopy, we can identify changes in invasive regions not seen in noninvasive regions.


Asunto(s)
Neoplasias Encefálicas/irrigación sanguínea , Neoplasias Encefálicas/metabolismo , Glioblastoma/irrigación sanguínea , Glioblastoma/metabolismo , Imagen por Resonancia Magnética , Imagen Multimodal , Adulto , Anciano , Encéfalo/irrigación sanguínea , Encéfalo/metabolismo , Circulación Cerebrovascular , Medios de Contraste , Imagen de Difusión Tensora , Femenino , Humanos , Aumento de la Imagen , Espectroscopía de Resonancia Magnética , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...