Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Sens ; 9(5): 2567-2574, 2024 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-38696667

RESUMEN

In vivo drug monitoring is crucial for evaluating the effectiveness and safety of drug treatment. Blood sampling and analysis is the current gold standard but needs professional skills and cannot meet the requirements of point-of-care testing. Dermal interstitial fluid (ISF) showed great potential to replace blood for in vivo drug monitoring; however, the detection was challenging, and the drug distribution behavior in ISF was still unclear until now. In this study, we proposed surface-enhanced Raman spectroscopy (SERS) microneedles (MNs) for the painless and real-time analysis of drugs in ISF after intravenous injection. Using methylene blue (MB) and mitoxantrone (MTO) as model drugs, the innovative core-satellite structured Au@Ag SERS substrate, hydrogel coating over the MNs, rendered sensitive and quantitative drug detection in ISF of mice within 10 min. Based on this technique, the pharmacokinetics of the two drugs in ISF was investigated and compared with those in blood, where the drugs were analyzed via liquid chromatography-mass spectrometry. It was found that the MB concentration in ISF and blood was comparable, whereas the concentration of MTO in ISF was 2-3 orders of magnitude lower than in blood. This work proposed an efficient tool for ISF drug monitoring. More importantly, it experimentally proved that the penetration ratio of blood to ISF was drug-dependent, providing insightful information into the potential of ISF as a blood alternative for in vivo drug detection.


Asunto(s)
Monitoreo de Drogas , Líquido Extracelular , Hidrogeles , Azul de Metileno , Agujas , Espectrometría Raman , Animales , Espectrometría Raman/métodos , Líquido Extracelular/química , Azul de Metileno/química , Ratones , Hidrogeles/química , Monitoreo de Drogas/métodos , Monitoreo de Drogas/instrumentación , Plata/química , Mitoxantrona/sangre , Mitoxantrona/análisis , Mitoxantrona/farmacocinética , Oro/química , Piel/metabolismo , Piel/química
2.
Environ Sci Ecotechnol ; 8: 100129, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36156994

RESUMEN

Recycling waste tires through pyrolysis technology generates refractory wastewater, which is harmful to the environment if not disposed properly. In this study, a combined process of coagulation detoxification and biodegradation was used to treat tire pyrolysis wastewater. Organics removal characteristics at the molecular level were investigated using electrospray ionization (ESI) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). The results showed that nearly 90% of the organic matter from the wastewater was removed through the process. Preference of the two coagulants for different classes of organics in tire pyrolysis wastewater was observed. The covalently bound inorganic-organic hybrid coagulant (CBHyC) used in this work had a complementary relationship with biodegradation for the organics removal: this coagulant reduced toxicity and enhanced the biodegradation by preferentially removing refractory substances such as lignin with a high degree of oxidation (O/C > 0.3). This study provides molecular insight into the organics of tire pyrolysis wastewater removed by a combined treatment process, supporting the advancement and application of waste rubber recycling technology. It also contributes to the possible development of an effective treatment process for refractory wastewater.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...