Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(29): 8979-8987, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38994924

RESUMEN

With the development of miniaturized devices, there is an increasing demand for 2D multifunctional materials. Six ferroelastic semiconductors, Y2Se2XX' (X, X' = I, Br, Cl, or F; X ≠ X') monolayers, are theoretically predicted here. Their in-plane anisotropic band structure, elastic and piezoelectric properties can be switched by ferroelastic strain. Moderate energy barriers can prevent the undesired ferroelastic switching that minor interferences produce. These monolayers exhibit high carrier mobilities (up to 104 cm2 V-1 s-1) with strong in-plane anisotropy. Furthermore, their wide bandgaps and high potential differences make them broad-pH-value and high-performance photocatalysts at pH value of 0-14. Strikingly, Y2Se2BrF possesses outstanding d33 (d33 = -405.97 pm/V), greatly outperforming CuInP2S6 by 4.26 times. Overall, the nano Y2Se2BrF is a hopeful candidate for multifunctional devices to generate a direct current and achieve solar-free photocatalysis. This work provides a new paradigm for the design of multifunctional energy materials.

2.
Small ; 20(8): e2306363, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37817352

RESUMEN

Owing to the Fermi pinning effect arose in the metal electrodes deposition process, metal-semiconductor contact is always independent on the work function, which challenges the next-generation optoelectronic devices. In this work, a metal-assisted transfer approach is developed to transfer Bi2 O2 Se nanosheets onto the pre-deposited metal electrodes, benefiting to the tunable metal-semiconductor contact. The success in Bi2 O2 Se nanosheets transfer is contributed to the stronger van der Waals adhesion of metal electrodes than that of growth substrates. With the pre-deposited asymmetric electrodes, the self-powered near-infrared photodetectors are realized, demonstrating low dark current of 0.04 pA, high Ilight /Idark ratio of 380, fast rise and decay times of 4 and 6 ms, respectively, under the illumination of 1310 nm laser. By pre-depositing the metal electrodes on polyimide and glass, high-performance flexible and omnidirectional self-powered near-infrared photodetectors are achieved successfully. This study opens up new opportunities for low-dimensional semiconductors in next-generation high-performance optoelectronic devices.

3.
Nano Lett ; 22(23): 9707-9713, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36445059

RESUMEN

Power consumption makes next-generation large-scale photodetection challenging. In this work, the source-gated transistor (SGT) is adopted first as a photodetector, demonstrating the expected low power consumption and high photodetection performance. The SGT is constructed by the functional sulfur-rich shelled GeS nanowire (NW) and low-function metal, displaying a low saturated voltage of 0.61 V ± 0.29 V and an extremely low power consumption of 7.06 pW. When the as-constructed NW SGT is used as a photodetector, the maximum value of the power consumption is as low as 11.96 nW, which is far below that of the reported phototransistors working in the saturated region. Furthermore, benefiting from the adopted SGT device, the photodetector shows a high photovoltage of 6.6 × 10-1 V, a responsivity of 7.86 × 1012 V W-1, and a detectivity of 5.87 × 1013 Jones. Obviously, the low power consumption and excellent responsivity and detectivity enabled by NW SGT promise a new approach to next-generation, high-performance photodetection technology.

4.
Opt Express ; 28(21): 31487-31498, 2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33115121

RESUMEN

Using two well-defined empirical parameters, we numerically investigate the details of the disorder-induced topological state transition (TST) in photonic Chern insulators composed of two-dimensional magnetic photonic crystals (MPCs). The TST undergoes a gradual process, accompanied with some interesting phenomena as the disorder of rod positions in MPCs increases gradually. This kind of TST is determined by the competition among the topologically protected edge state, disorder-induced wave localizations and bulk states in the system. More interestingly, the disorder-induced wave localizations almost have no influence on the one-way propagation of the original photonic topological states (PTSs), and the unidirectional nature of the PTSs at the edge area can survive even when the bulk states arise at stronger disorders. Our results provide detailed demonstrations for the deep understanding of fundamental physics underlying topology and disorder and are also of practical significance in device fabrication with PTSs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA