Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Comput Biol Med ; 179: 108817, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39004049

RESUMEN

Force myography (FMG) is increasingly gaining importance in gesture recognition because of it's ability to achieve high classification accuracy without having a direct contact with the skin. In this study, we investigate the performance of a bracelet with only six commercial force sensitive resistors (FSR) sensors for classifying many hand gestures representing all letters and numbers from 0 to 10 in the American sign language. For this, we introduce an optimized feature selection in combination with the Extreme Learning Machine (ELM) as a classifier by investigating three swarm intelligence algorithms, which are the binary grey wolf optimizer (BGWO), binary grasshopper optimizer (BGOA), and binary hybrid grey wolf particle swarm optimizer (BGWOPSO), which is used as an optimization method for ELM for the first time in this study. The findings reveal that the BGWOPSO, in which PSO supports the GWO optimizer by controlling its exploration and exploitation using inertia constant to improve the convergence speed to reach the best global optima, outperformed the other investigated algorithms. In addition, the results show that optimizing ELM with BGWOPSO for feature selection can efficiently improve the performance of ELM to enhance the classification accuracy from 32% to 69.84% for classifying 37 gestures collected from multiple volunteers and using only a band with 6 FSR sensors.

2.
Methods Inf Med ; 49(3): 230-7, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20091018

RESUMEN

BACKGROUND: The process of automatic sleep stage scoring consists of two major parts: feature extraction and classification. Features are normally extracted from the polysomnographic recordings, mainly electroencephalograph (EEG) signals. The EEG is considered a non-stationary signal which increases the complexity of the detection of different waves in it. OBJECTIVES: This work presents a new technique for automatic sleep stage scoring based on employing continuous wavelet transform (CWT) and linear discriminant analysis (LDA) using different mother wavelets to detect different waves embedded in the EEG signal. METHODS: The use of different mother wavelets increases the ability to detect waves in the EEG signal. The extracted features were formed based on CWT time frequency entropy using three mother wavelets, and the classification was performed using the linear discriminant analysis. Thirty-two data sets from the MIT-BIH database were used to evaluate the performance of the proposed method. RESULTS: Features of a single EEG signal were extracted successfully based on the time frequency entropy using the continuous wavelet transform with three mother wavelets. The proposed method has shown to outperform the classification based on a CWT using a single mother wavelet. The accuracy was found to be 0.84, while the kappa coefficient was 0.78. CONCLUSIONS: This work has shown that wavelet time frequency entropy provides a powerful tool for feature extraction for the non-stationary EEG signal; the accuracy of the classification procedure improved when using multiple wavelets compared to the use of single wavelet time frequency entropy.


Asunto(s)
Clasificación/métodos , Modelos Estadísticos , Fases del Sueño , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...