Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(3): 113911, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38446668

RESUMEN

Claudin-5 (CLDN5) is an endothelial tight junction protein essential for blood-brain barrier (BBB) formation. Abnormal CLDN5 expression is common in brain disease, and knockdown of Cldn5 at the BBB has been proposed to facilitate drug delivery to the brain. To study the consequences of CLDN5 loss in the mature brain, we induced mosaic endothelial-specific Cldn5 gene ablation in adult mice (Cldn5iECKO). These mice displayed increased BBB permeability to tracers up to 10 kDa in size from 6 days post induction (dpi) and ensuing lethality from 10 dpi. Single-cell RNA sequencing at 11 dpi revealed profound transcriptomic differences in brain endothelial cells regardless of their Cldn5 status in mosaic mice, suggesting major non-cell-autonomous responses. Reactive microglia and astrocytes suggested rapid cellular responses to BBB leakage. Our study demonstrates a critical role for CLDN5 in the adult BBB and provides molecular insight into the consequences and risks associated with CLDN5 inhibition.


Asunto(s)
Barrera Hematoencefálica , Células Endoteliales , Animales , Ratones , Transporte Biológico , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Claudina-5/genética , Claudina-5/metabolismo , Células Endoteliales/metabolismo
2.
J Exp Med ; 221(2)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38117255

RESUMEN

In dorsal root ganglia (DRG), macrophages reside close to sensory neurons and have largely been explored in the context of pain, nerve injury, and repair. However, we discovered that most DRG macrophages interact with and monitor the vasculature by sampling macromolecules from the blood. Characterization of the DRG vasculature revealed a specialized endothelial bed that transformed in molecular, structural, and permeability properties along the arteriovenous axis and was covered by macrophage-interacting pericytes and fibroblasts. Macrophage phagocytosis spatially aligned with peak endothelial permeability, a process regulated by enhanced caveolar transcytosis in endothelial cells. Profiling the DRG immune landscape revealed two subsets of perivascular macrophages with distinct transcriptome, turnover, and function. CD163+ macrophages self-maintained locally, specifically participated in vasculature monitoring, displayed distinct responses during peripheral inflammation, and were conserved in mouse and man. Our work provides a molecular explanation for the permeability of the blood-DRG barrier and identifies an unappreciated role of macrophages as integral components of the DRG-neurovascular unit.


Asunto(s)
Células Endoteliales , Ganglios Espinales , Humanos , Macrófagos , Pericitos , Permeabilidad
3.
Neuron ; 111(23): 3745-3764.e7, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37776854

RESUMEN

Leptomeninges, consisting of the pia mater and arachnoid, form a connective tissue investment and barrier enclosure of the brain. The exact nature of leptomeningeal cells has long been debated. In this study, we identify five molecularly distinct fibroblast-like transcriptomes in cerebral leptomeninges; link them to anatomically distinct cell types of the pia, inner arachnoid, outer arachnoid barrier, and dural border layer; and contrast them to a sixth fibroblast-like transcriptome present in the choroid plexus and median eminence. Newly identified transcriptional markers enabled molecular characterization of cell types responsible for adherence of arachnoid layers to one another and for the arachnoid barrier. These markers also proved useful in identifying the molecular features of leptomeningeal development, injury, and repair that were preserved or changed after traumatic brain injury. Together, the findings highlight the value of identifying fibroblast transcriptional subsets and their cellular locations toward advancing the understanding of leptomeningeal physiology and pathology.


Asunto(s)
Aracnoides , Meninges , Ratones , Animales , Aracnoides/anatomía & histología , Piamadre , Plexo Coroideo , Encéfalo
4.
Sci Rep ; 13(1): 15022, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37699967

RESUMEN

The heart depends on a functional vasculature for oxygenation and transport of nutrients, and it is of interest to learn how primary impairment of the vasculature can indirectly affect cardiac function and heart morphology. Notch3-deficiency causes vascular smooth muscle cell (VSMC) loss in the vasculature but the consequences for the heart remain largely elusive. Here, we demonstrate that Notch3-/- mice have enlarged hearts with left ventricular hypertrophy and mild fibrosis. Cardiomyocytes were hypertrophic but not hyperproliferative, and the expression of several cardiomyocyte markers, including Tnt2, Myh6, Myh7 and Actn2, was altered. Furthermore, expression of genes regulating the metabolic status of the heart was affected: both Pdk4 and Cd36 were downregulated, indicating a metabolic switch from fatty acid oxidation to glucose consumption. Notch3-/- mice furthermore showed lower liver lipid content. Notch3 was expressed in heart VSMC and pericytes but not in cardiomyocytes, suggesting that a perturbation of Notch signalling in VSMC and pericytes indirectly impairs the cardiomyocytes. In keeping with this, Pdgfbret/ret mice, characterized by reduced numbers of VSMC and pericytes, showed left ventricular and cardiomyocyte hypertrophy. In conclusion, we demonstrate that reduced Notch3 or PDGFB signalling in vascular mural cells leads to cardiomyocyte dysfunction.


Asunto(s)
Cardiomegalia , Hipertrofia Ventricular Izquierda , Animales , Ratones , Becaplermina , Metabolismo de los Lípidos , Miocitos Cardíacos , Proteínas Proto-Oncogénicas c-sis
5.
Cell Rep Methods ; 3(3): 100431, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-37056377

RESUMEN

Studying disease-related changes in the brain vasculature is warranted due to its crucial role in supplying oxygen and nutrients and removing waste and due to the anticipated vascular dysfunction in brain diseases. To this end, we have developed a protocol for fast and simple isolation of brain vascular fragments without the use of transgenic reporters. We used it to isolate and analyze 22,515 cells by single-cell RNA sequencing. The cells distributed into 23 distinct clusters corresponding to all known vascular and perivascular cell types in the brain. Western blot analysis also suggested that the protocol is suitable for proteomic analysis. We further adapted it for the establishment of primary cell cultures. The protocol generated highly reproducible results. In conclusion, we have developed a simple and robust brain vascular isolation protocol suitable for different experimental modalities, such as single-cell analyses, western blotting, and primary cell culture.


Asunto(s)
Sistema Cardiovascular , Proteómica , Ratones , Animales , Encéfalo/irrigación sanguínea , Células Cultivadas
6.
Nat Commun ; 13(1): 2003, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35422069

RESUMEN

Blood-brain barrier (BBB) dysfunction is associated with worse epilepsy outcomes however the underlying molecular mechanisms of BBB dysfunction remain to be elucidated. Tight junction proteins are important regulators of BBB integrity and in particular, the tight junction protein claudin-5 is the most enriched in brain endothelial cells and regulates size-selectivity at the BBB. Additionally, disruption of claudin-5 expression has been implicated in numerous disorders including schizophrenia, depression and traumatic brain injury, yet its role in epilepsy has not been fully deciphered. Here we report that claudin-5 protein levels are significantly diminished in surgically resected brain tissue from patients with treatment-resistant epilepsy. Concomitantly, dynamic contrast-enhanced MRI in these patients showed widespread BBB disruption. We show that targeted disruption of claudin-5 in the hippocampus or genetic heterozygosity of claudin-5 in mice exacerbates kainic acid-induced seizures and BBB disruption. Additionally, inducible knockdown of claudin-5 in mice leads to spontaneous recurrent seizures, severe neuroinflammation, and mortality. Finally, we identify that RepSox, a regulator of claudin-5 expression, can prevent seizure activity in experimental epilepsy. Altogether, we propose that BBB stabilizing drugs could represent a new generation of agents to prevent seizure activity in epilepsy patients.


Asunto(s)
Barrera Hematoencefálica , Células Endoteliales , Animales , Barrera Hematoencefálica/metabolismo , Claudina-5/genética , Claudina-5/metabolismo , Células Endoteliales/metabolismo , Humanos , Ratones , Convulsiones/metabolismo , Proteínas de Uniones Estrechas/metabolismo , Uniones Estrechas/metabolismo
7.
Stem Cell Reports ; 17(5): 1089-1104, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35452595

RESUMEN

Humanized mouse models and mouse-adapted SARS-CoV-2 virus are increasingly used to study COVID-19 pathogenesis, so it is important to learn where the SARS-CoV-2 receptor ACE2 is expressed. Here we mapped ACE2 expression during mouse postnatal development and in adulthood. Pericytes in the CNS, heart, and pancreas express ACE2 strongly, as do perineurial and adrenal fibroblasts, whereas endothelial cells do not at any location analyzed. In a number of other organs, pericytes do not express ACE2, including in the lung where ACE2 instead is expressed in bronchial epithelium and alveolar type II cells. The onset of ACE2 expression is organ specific: in bronchial epithelium already at birth, in brain pericytes before, and in heart pericytes after postnatal day 10.5. Establishing the vascular localization of ACE2 expression is central to correctly interpret data from modeling COVID-19 in the mouse and may shed light on the cause of vascular COVID-19 complications.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Pericitos , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , COVID-19/complicaciones , Enfermedades Cardiovasculares/virología , Células Endoteliales , Ratones , Pericitos/metabolismo , SARS-CoV-2
8.
J Cereb Blood Flow Metab ; 42(2): 264-279, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34689641

RESUMEN

Platelet-derived growth factor B (PDGFB) released from endothelial cells is indispensable for pericyte recruitment during angiogenesis in embryonic and postnatal organ growth. Constitutive genetic loss-of-function of PDGFB leads to pericyte hypoplasia and the formation of a sparse, dilated and venous-shifted brain microvasculature with dysfunctional blood-brain barrier (BBB) in mice, as well as the formation of microvascular calcification in both mice and humans. Endothelial PDGFB is also expressed in the adult quiescent microvasculature, but here its importance is unknown. We show that deletion of Pdgfb in endothelial cells in 2-months-old mice causes a slowly progressing pericyte loss leading, at 12-18 months of age, to ≈50% decrease in endothelial:pericyte cell ratio, ≈60% decrease in pericyte longitudinal capillary coverage and >70% decrease in pericyte marker expression. Similar to constitutive loss of Pdgfb, this correlates with increased BBB permeability. However, in contrast to the constitutive loss of Pdgfb, adult-induced loss does not lead to vessel dilation, impaired arterio-venous zonation or the formation of microvascular calcifications. We conclude that PDFGB expression in quiescent adult microvascular brain endothelium is critical for the maintenance of pericyte coverage and normal BBB function, but that microvessel dilation, rarefaction, arterio-venous skewing and calcification reflect developmental roles of PDGFB.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Permeabilidad Capilar , Endotelio Vascular/metabolismo , Linfocinas/metabolismo , Pericitos/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Calcificación Vascular/metabolismo , Animales , Barrera Hematoencefálica/patología , Endotelio Vascular/patología , Regulación de la Expresión Génica , Linfocinas/genética , Ratones , Ratones Noqueados , Pericitos/patología , Factor de Crecimiento Derivado de Plaquetas/genética , Calcificación Vascular/genética , Calcificación Vascular/patología
10.
Circ Res ; 128(4): e46-e62, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33375813

RESUMEN

RATIONALE: Pericytes are capillary mural cells playing a role in stabilizing newly formed blood vessels during development and tissue repair. Loss of pericytes has been described in several brain disorders, and genetically induced pericyte deficiency in the brain leads to increased macromolecular leakage across the blood-brain barrier (BBB). However, the molecular details of the endothelial response to pericyte deficiency remain elusive. OBJECTIVE: To map the transcriptional changes in brain endothelial cells resulting from lack of pericyte contact at single-cell level and to correlate them with regional heterogeneities in BBB function and vascular phenotype. METHODS AND RESULTS: We reveal transcriptional, morphological, and functional consequences of pericyte absence for brain endothelial cells using a combination of methodologies, including single-cell RNA sequencing, tracer analyses, and immunofluorescent detection of protein expression in pericyte-deficient adult Pdgfbret/ret mice. We find that endothelial cells without pericyte contact retain a general BBB-specific gene expression profile, however, they acquire a venous-shifted molecular pattern and become transformed regarding the expression of numerous growth factors and regulatory proteins. Adult Pdgfbret/ret brains display ongoing angiogenic sprouting without concomitant cell proliferation providing unique insights into the endothelial tip cell transcriptome. We also reveal heterogeneous modes of pericyte-deficient BBB impairment, where hotspot leakage sites display arteriolar-shifted identity and pinpoint putative BBB regulators. By testing the causal involvement of some of these using reverse genetics, we uncover a reinforcing role for angiopoietin 2 at the BBB. CONCLUSIONS: By elucidating the complexity of endothelial response to pericyte deficiency at cellular resolution, our study provides insight into the importance of brain pericytes for endothelial arterio-venous zonation, angiogenic quiescence, and a limited set of BBB functions. The BBB-reinforcing role of ANGPT2 (angiopoietin 2) is paradoxical given its wider role as TIE2 (TEK receptor tyrosine kinase) receptor antagonist and may suggest a unique and context-dependent function of ANGPT2 in the brain.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Pericitos/citología , Animales , Barrera Hematoencefálica/citología , Barrera Hematoencefálica/patología , Proliferación Celular , Células Cultivadas , Células Endoteliales/metabolismo , Células Endoteliales/fisiología , Linfocinas/deficiencia , Linfocinas/genética , Ratones , Ratones Endogámicos C57BL , Neovascularización Fisiológica , Pericitos/metabolismo , Pericitos/patología , Factor de Crecimiento Derivado de Plaquetas/deficiencia , Factor de Crecimiento Derivado de Plaquetas/genética , Análisis de la Célula Individual , Transcriptoma
11.
Brain Pathol ; 30(3): 446-464, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31561281

RESUMEN

Primary familial brain calcification (PFBC) is an age-dependent and rare neurodegenerative disorder characterized by microvascular calcium phosphate deposits in the deep brain regions. Known genetic causes of PFBC include loss-of-function mutations in genes involved in either of three processes-platelet-derived growth factor (PDGF) signaling, phosphate homeostasis or protein glycosylation-with unclear molecular links. To provide insight into the pathogenesis of PFBC, we analyzed murine models of PFBC for the first two of these processes in Pdgfbret/ret and Slc20a2-/- mice with regard to the structure, molecular composition, development and distribution of perivascular calcified nodules. Analyses by transmission electron microscopy and immunofluorescence revealed that calcified nodules in both of these models have a multilayered ultrastructure and occur in direct contact with reactive astrocytes and microglia. However, whereas nodules in Pdgfbret/ret mice were large, solitary and smooth surfaced, the nodules in Slc20a2-/- mice were multi-lobulated and occurred in clusters. The regional distribution of nodules also differed between the two models. Proteomic analysis and immunofluorescence stainings revealed a common molecular composition of the nodules in the two models, involving proteins implicated in bone homeostasis, but also proteins not previously linked to tissue mineralization. While the brain vasculature of Pdgfbret/ret mice has been reported to display reduced pericyte coverage and abnormal permeability, we found that Slc20a2-/- mice have a normal pericyte coverage and no overtly increased permeability. Thus, lack of pericytes and increase in permeability of the blood-brain barrier are likely not the causal triggers for PFBC pathogenesis. Instead, gene expression and spatial correlations suggest that astrocytes are intimately linked to the calcification process in PFBC.


Asunto(s)
Astrocitos/metabolismo , Encefalopatías/metabolismo , Calcinosis/metabolismo , Matriz Extracelular/metabolismo , Microglía/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Animales , Astrocitos/patología , Encefalopatías/genética , Encefalopatías/patología , Calcinosis/genética , Calcinosis/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Matriz Extracelular/patología , Femenino , Masculino , Ratones , Ratones Transgénicos , Microglía/patología , Mutación , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Factor de Crecimiento Derivado de Plaquetas/genética , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/genética , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/metabolismo
12.
Cell Rep ; 26(11): 2955-2969.e3, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30865886

RESUMEN

The glymphatic system is a highly polarized cerebrospinal fluid (CSF) transport system that facilitates the clearance of neurotoxic molecules through a brain-wide network of perivascular pathways. Herein we have mapped the development of the glymphatic system in mice. Perivascular CSF transport first emerges in hippocampus in newborn mice, and a mature glymphatic system is established in the cortex at 2 weeks of age. Formation of astrocytic endfeet and polarized expression of aquaporin 4 (AQP4) consistently coincided with the appearance of perivascular CSF transport. Deficiency of platelet-derived growth factor B (PDGF-B) function in the PDGF retention motif knockout mouse line Pdgfbret/ret suppressed the development of the glymphatic system, whose functions remained suppressed in adulthood compared with wild-type mice. These experiments map the natural development of the glymphatic system in mice and define a critical role of PDGF-B in the development of perivascular CSF transport.


Asunto(s)
Astrocitos/metabolismo , Sistema Glinfático/crecimiento & desarrollo , Linfocinas/genética , Factor de Crecimiento Derivado de Plaquetas/genética , Animales , Acuaporina 4/genética , Acuaporina 4/metabolismo , Astrocitos/citología , Femenino , Sistema Glinfático/metabolismo , Hipocampo/crecimiento & desarrollo , Hipocampo/metabolismo , Linfocinas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transporte de Proteínas
13.
Vascul Pharmacol ; 112: 8-16, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30423447

RESUMEN

Branching morphogenesis is a fascinating process whereby a simple network of biological tubes increases its complexity by adding new branches to existing ones, generating an enlarged structure of interconnected tubes. Branching morphogenesis has been studied extensively in animals and much has been learned about the regulation of branching at the cellular and molecular level. Here, we discuss studies of the Drosophila trachea and of the vertebrate vasculature, which have revealed how new branches are formed and connect (anastomose), leading to the establishment of complex tubular networks. We briefly describe the cell behaviour underlying tracheal and vascular branching. Although similar at many levels, the branching and anastomosis processes characterized thus far show a number of differences in cell behaviour, resulting in somewhat different tube architectures in these two organs. We describe the similarities and the differences and discuss them in the context of their possible developmental significance. We finish by highlighting some old and new data, which suggest that live imaging of the development of capillary beds in adult animals might reveal yet unexplored endothelial behaviour of endothelial cells.


Asunto(s)
Vasos Sanguíneos/citología , Drosophila/citología , Células Endoteliales/citología , Células Epiteliales/citología , Neovascularización Fisiológica , Tráquea/citología , Pez Cebra/anatomía & histología , Animales , Vasos Sanguíneos/metabolismo , Comunicación Celular , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Forma de la Célula , Drosophila/metabolismo , Células Endoteliales/metabolismo , Células Epiteliales/metabolismo , Ratones , Morfogénesis , Fenotipo , Transducción de Señal , Tráquea/metabolismo , Pez Cebra/metabolismo
14.
Sci Rep ; 8(1): 17462, 2018 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-30498224

RESUMEN

Diabetes mellitus is associated with cognitive impairment and various central nervous system pathologies such as stroke, vascular dementia, or Alzheimer's disease. The exact pathophysiology of these conditions is poorly understood. Recent reports suggest that hyperglycemia causes cerebral microcirculation pathology and blood-brain barrier (BBB) dysfunction and leakage. The majority of these reports, however, are based on methods including in vitro BBB modeling or streptozotocin-induced diabetes in rodents, opening questions regarding the translation of the in vitro findings to the in vivo situation, and possible direct effects of streptozotocin on the brain vasculature. Here we used a genetic mouse model of hyperglycemia (Ins2AKITA) to address whether prolonged systemic hyperglycemia induces BBB dysfunction and leakage. We applied a variety of methodologies to carefully evaluate BBB function and cellular integrity in vivo, including the quantification and visualization of specific tracers and evaluation of transcriptional and morphological changes in the BBB and its supporting cellular components. These experiments did neither reveal altered BBB permeability nor morphological changes of the brain vasculature in hyperglycemic mice. We conclude that prolonged hyperglycemia does not lead to BBB dysfunction, and thus the cognitive impairment observed in diabetes may have other causes.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Permeabilidad Capilar , Hiperglucemia/metabolismo , Hiperglucemia/patología , Pericitos/metabolismo , Pericitos/patología , Animales , Recuento de Células , Manejo de la Enfermedad , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Hiperglucemia/genética , Inmunohistoquímica , Masculino , Ratones , Ratones Noqueados , Microglía/metabolismo
15.
Sci Data ; 5: 180160, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30129931

RESUMEN

Vascular diseases are major causes of death, yet our understanding of the cellular constituents of blood vessels, including how differences in their gene expression profiles create diversity in vascular structure and function, is limited. In this paper, we describe a single-cell RNA sequencing (scRNA-seq) dataset that defines vascular and vessel-associated cell types and subtypes in mouse brain and lung. The dataset contains 3,436 single cell transcriptomes from mouse brain, which formed 15 distinct clusters corresponding to cell (sub)types, and another 1,504 single cell transcriptomes from mouse lung, which formed 17 cell clusters. In order to allow user-friendly access to our data, we constructed a searchable database (http://betsholtzlab.org/VascularSingleCells/database.html). Our dataset constitutes a comprehensive molecular atlas of vascular and vessel-associated cell types in the mouse brain and lung, and as such provides a strong foundation for future studies of vascular development and diseases.


Asunto(s)
Vasos Sanguíneos , Encéfalo/irrigación sanguínea , Pulmón/irrigación sanguínea , Transcriptoma , Animales , Vasos Sanguíneos/citología , Vasos Sanguíneos/fisiología , Bases de Datos Factuales , Células Endoteliales/fisiología , Ratones , Miocitos del Músculo Liso/fisiología , Pericitos/fisiología , Análisis de Secuencia de ARN , Análisis de la Célula Individual
16.
Nature ; 560(7716): E3, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29925939

RESUMEN

In Fig. 1b of this Article, 'Csf1r' was misspelt 'Csfr1'. In addition, in Extended Data Fig. 11b, owing to an error during figure formatting, the genes listed in the first column shifted down three rows below the first gene on the list, causing a mismatch between the gene names and their characteristics. These errors have been corrected online, and the original Extended Data Fig. 11b is provided as Supplementary Information to the accompanying Amendment.

17.
Nature ; 554(7693): 475-480, 2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29443965

RESUMEN

Cerebrovascular disease is the third most common cause of death in developed countries, but our understanding of the cells that compose the cerebral vasculature is limited. Here, using vascular single-cell transcriptomics, we provide molecular definitions for the principal types of blood vascular and vessel-associated cells in the adult mouse brain. We uncover the transcriptional basis of the gradual phenotypic change (zonation) along the arteriovenous axis and reveal unexpected cell type differences: a seamless continuum for endothelial cells versus a punctuated continuum for mural cells. We also provide insight into pericyte organotypicity and define a population of perivascular fibroblast-like cells that are present on all vessel types except capillaries. Our work illustrates the power of single-cell transcriptomics to decode the higher organizational principles of a tissue and may provide the initial chapter in a molecular encyclopaedia of the mammalian vasculature.


Asunto(s)
Vasos Sanguíneos/citología , Encéfalo/irrigación sanguínea , Encéfalo/citología , Células Endoteliales/clasificación , Animales , Arterias/citología , Arteriolas/citología , Capilares/citología , Femenino , Fibroblastos/clasificación , Masculino , Ratones , Miocitos del Músculo Liso/clasificación , Especificidad de Órganos , Pericitos/clasificación , Análisis de la Célula Individual , Transcriptoma , Venas/citología
18.
Cell Rep ; 20(8): 1755-1764, 2017 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-28834740

RESUMEN

The role of the neurovascular niche in CNS myelin regeneration is incompletely understood. Here, we show that, upon demyelination, CNS-resident pericytes (PCs) proliferate, and parenchymal non-vessel-associated PC-like cells (PLCs) rapidly develop. During remyelination, mature oligodendrocytes were found in close proximity to PCs. In Pdgfbret/ret mice, which have reduced PC numbers, oligodendrocyte progenitor cell (OPC) differentiation was delayed, although remyelination proceeded to completion. PC-conditioned medium accelerated and enhanced OPC differentiation in vitro and increased the rate of remyelination in an ex vivo cerebellar slice model of demyelination. We identified Lama2 as a PC-derived factor that promotes OPC differentiation. Thus, the functional role of PCs is not restricted to vascular homeostasis but includes the modulation of adult CNS progenitor cells involved in regeneration.


Asunto(s)
Sistema Nervioso Central/fisiología , Oligodendroglía/fisiología , Pericitos/fisiología , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Sistema Nervioso Central/citología , Sistema Nervioso Central/metabolismo , Enfermedades Desmielinizantes , Humanos , Ratones , Regeneración Nerviosa/fisiología , Oligodendroglía/citología , Oligodendroglía/metabolismo , Pericitos/citología , Pericitos/metabolismo
19.
Development ; 144(19): 3590-3601, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28851707

RESUMEN

Tissue fluid drains through blind-ended lymphatic capillaries, via smooth muscle cell (SMC)-covered collecting vessels into venous circulation. Both defective SMC recruitment to collecting vessels and ectopic recruitment to lymphatic capillaries are thought to contribute to vessel failure, leading to lymphedema. However, mechanisms controlling lymphatic SMC recruitment and its role in vessel maturation are unknown. Here, we demonstrate that platelet-derived growth factor B (PDGFB) regulates lymphatic SMC recruitment in multiple vascular beds. PDGFB is selectively expressed by lymphatic endothelial cells (LECs) of collecting vessels. LEC-specific deletion of Pdgfb prevented SMC recruitment causing dilation and failure of pulsatile contraction of collecting vessels. However, vessel remodelling and identity were unaffected. Unexpectedly, Pdgfb overexpression in LECs did not induce SMC recruitment to capillaries. This was explained by the demonstrated requirement of PDGFB extracellular matrix (ECM) retention for lymphatic SMC recruitment, and the low presence of PDGFB-binding ECM components around lymphatic capillaries. These results demonstrate the requirement of LEC-autonomous PDGFB expression and retention for SMC recruitment to lymphatic vessels, and suggest an ECM-controlled checkpoint that prevents SMC investment of capillaries, which is a common feature in lymphedematous skin.


Asunto(s)
Células Endoteliales/metabolismo , Vasos Linfáticos/anatomía & histología , Vasos Linfáticos/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteínas Proto-Oncogénicas c-sis/metabolismo , Animales , Animales Recién Nacidos , Capilares/metabolismo , Comunicación Celular , Dermis/metabolismo , Matriz Extracelular/metabolismo , Femenino , Miembro Posterior/metabolismo , Masculino , Mesenterio/metabolismo , Morfogénesis , Tamaño de los Órganos
20.
Sci Rep ; 6: 35108, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27725773

RESUMEN

Pericytes, the mural cells of blood microvessels, regulate microvascular development and function and have been implicated in many brain diseases. However, due to a paucity of defining markers, pericyte identification and functional characterization remain ambiguous and data interpretation problematic. In mice carrying two transgenic reporters, Pdgfrb-eGFP and NG2-DsRed, we found that double-positive cells were vascular mural cells, while the single reporters marked additional, but non-overlapping, neuroglial cells. Double-positive cells were isolated by fluorescence-activated cell sorting (FACS) and analyzed by RNA sequencing. To reveal defining patterns of mural cell transcripts, we compared the RNA sequencing data with data from four previously published studies. The meta-analysis provided a conservative catalogue of 260 brain mural cell-enriched gene transcripts. We validated pericyte-specific expression of two novel markers, vitronectin (Vtn) and interferon-induced transmembrane protein 1 (Ifitm1), using fluorescent in situ hybridization and immunohistochemistry. We further analyzed signaling pathways and interaction networks of the pericyte-enriched genes in silico. This work provides novel insight into the molecular composition of brain mural cells. The reported gene catalogue facilitates identification of brain pericytes by providing numerous new candidate marker genes and is a rich source for new hypotheses for future studies of brain mural cell physiology and pathophysiology.


Asunto(s)
Encéfalo/citología , Perfilación de la Expresión Génica , Microvasos/citología , Pericitos/fisiología , Animales , Citometría de Flujo , Ratones , Análisis de Secuencia de ARN , Coloración y Etiquetado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA