Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Tipo de estudio
Intervalo de año de publicación
1.
Braz Oral Res ; 37: e44, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37132731

RESUMEN

This study investigated the impact of a modified implant macrogeometry on peri-implant healing and its effect on bone-related molecules in rats. Eighteen rats received one implant in each tibia: the control group received implants with conventional macrogeometry and the test group received implants with modified macrogeometry. After 30 days, the implants were removed for biomechanical analysis and the bone tissue around them was collected for quantifying gene expression of OPN, Runx2, ß-catenin, BMP-2, Dkk1, and RANKL/OPG. Calcein and tetracycline fluorescent markers were used for analyzing newly formed bone at undecalcified sections of the tibial implants. These fluorescent markers showed continuous bone formation at cortical bone width and sparse new bone formed along the medullary implant surface in both groups. However, higher counter-torque values and upregulation of OPN expression were achieved by test implants when compared to controls. The modified macrogeometry of implants optimized peri-implant healing, favoring the modulation of OPN expression in the osseous tissue around the implants.


Asunto(s)
Implantes Dentales , Oseointegración , Ratas , Animales , Oseointegración/fisiología , Huesos , Osteogénesis , Tibia/cirugía , Cicatrización de Heridas , Colorantes/farmacología , Titanio/farmacología
2.
Braz. oral res. (Online) ; 37: e44, 2023. tab, graf
Artículo en Inglés | LILACS-Express | LILACS, BBO - Odontología | ID: biblio-1430046

RESUMEN

Abstract This study investigated the impact of a modified implant macrogeometry on peri-implant healing and its effect on bone-related molecules in rats. Eighteen rats received one implant in each tibia: the control group received implants with conventional macrogeometry and the test group received implants with modified macrogeometry. After 30 days, the implants were removed for biomechanical analysis and the bone tissue around them was collected for quantifying gene expression of OPN, Runx2, β-catenin, BMP-2, Dkk1, and RANKL/OPG. Calcein and tetracycline fluorescent markers were used for analyzing newly formed bone at undecalcified sections of the tibial implants. These fluorescent markers showed continuous bone formation at cortical bone width and sparse new bone formed along the medullary implant surface in both groups. However, higher counter-torque values and upregulation of OPN expression were achieved by test implants when compared to controls. The modified macrogeometry of implants optimized peri-implant healing, favoring the modulation of OPN expression in the osseous tissue around the implants.

3.
Materials (Basel) ; 15(6)2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35329768

RESUMEN

DM has a high prevalence worldwide and exerts a negative influence on bone repair around dental implants. Modifications of the microgeometry of implants have been related to positive results in bone repair. This study assessed, for the first time, the influence of an implant with modified macrodesign based on the presence of a healing chamber in the pattern of peri-implant repair under diabetic conditions. Thirty Wistar rats were assigned to receive one titanium implant in each tibia (Control Implant (conventional macrogeometry) or Test Implant (modified macrogeometry)) according to the following groups: Non-DM + Control Implant; Non-DM + Test Implant; DM + Control Implant; DM + Test Implant. One month from the surgeries, the implants were removed for counter-torque, and the bone tissue surrounding the implants was stored for the mRNA quantification of bone-related markers. Implants located on DM animals presented lower counter-torque values in comparison with Non-DM ones, independently of macrodesign (p < 0.05). Besides, higher biomechanical retention levels were observed in implants with modified macrogeometry than in the controls in both Non-DM and DM groups (p < 0.05). Moreover, the modified macrogeometry upregulated OPN mRNA in comparison with the control group in Non-DM and DM rats (p < 0.05). Peri-implant bone repair may profit from the use of implants with modified macrogeometry in the presence of diabetes mellitus, as they offer higher biomechanical retention and positive modulation of important bone markers in peri-implant bone tissue.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA