Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Org Biomol Chem ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39016558

RESUMEN

The esterification of carboxylic acids is an important reaction for preparing esters which find wide applications in various research fields. In this manuscript, we report an acid/iodide cooperative catalytic method which enables highly efficient esterification of carboxylic acids with a wide range of equivalent O-H nucleophiles including both alcohols and weak nucleophilic phenols. Under the reaction conditions, both aromatic and aliphatic carboxylic acids including those bearing functional groups work well, furnishing the corresponding esters in good to high yields. Moreover, this reaction is scalable and applicable to the modification of bioactive molecules. These results demonstrate the synthetic value of this new reaction in organic synthesis.

2.
Chemistry ; : e202401369, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39003675

RESUMEN

A visible-light-initiated energy-transfer enabled radical cyclization for the divergent synthesis of polycyclic γ-sultine derivatives has been developed. The reaction provides an alternative and expeditious access to benzofused γ-sultine frameworks, the analogues of γ-lactones and γ-sultones, and features good functional group compatibility, mild reaction conditions and excellent diastereoselectivity. The robustness and application potential of this method have also been successfully displayed by two gram-scale reactions and the synthesis of polycyclic sultones. Mechanistic studies indicated the transformations through a possible energy-transfer enabled intramolecular radical homolytic substitution or hydrogen atom transfer process mainly.

3.
ACS Omega ; 9(26): 27932-27944, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38973852

RESUMEN

Recent studies have identified butanone as a promising biomarker in the breath of lung cancer patients, yet the understanding of its gas-sensing properties remains limited. A key challenge has been to enhance the gas-sensing performance of materials toward butanone, particularly under ultraviolet light exposure. Herein, we report the synthesis of a novel three-dimensional composite material composed of SnO2 incorporated with Bi2O3 using facile hydrothermal and impregnation precipitation methods. Detailed physical and chemical characterizations were performed to assess the properties of the developed material. Upon activation with ultraviolet light, our composite exhibited exceptionally high sensitivity to butanone. Remarkably, the butanone response was nearly 3 times greater for the Bi2O3-loaded SnO2 composite than for pristine SnO2, achieving a response value of 70. This substantial improvement is due to the synergistic effect of the material's distinctive three-dimensional architecture and the presence of Bi2O3, which significantly augmented the gas-sensing capability of butanone. To elucidate the underlying gas-sensing mechanism, we conducted first-principles calculations using density functional theory (DFT). The computational analysis revealed that the Bi2O3-containing system possesses superior adsorption energy for butanone. Ultimately, our findings suggest that the Bi-SnO2 composite holds great promise as an optimal sensing material for the detection of butanone under ultraviolet illumination.

4.
Sci Total Environ ; 946: 174332, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38950630

RESUMEN

Cathodic electroactive bacteria (C-EAB) which are capable of accepting electrons from solid electrodes provide fresh avenues for pollutant removal, biosensor design, and electrosynthesis. This review systematically summarized the burgeoning applications of the C-EAB over the past decade, including 1) removal of nitrate, aromatic derivatives, and metal ions; 2) biosensing based on biocathode; 3) electrosynthesis of CH4, H2, organic carbon, NH3, and protein. In addition, the mechanisms of electron transfer by the C-EAB are also classified and summarized. Extracellular electron transfer and interspecies electron transfer have been introduced, and the electron transport mechanism of typical C-EAB, such as Shewanella oneidensis MR-1, has been combed in detail. By bringing to light this cutting-edge area of the C-EAB, this review aims to stimulate more interest and research on not only exploring great potential applications of these electron-accepting bacteria, but also developing steady and scalable processes harnessing biocathodes.


Asunto(s)
Electrodos , Transporte de Electrón , Bacterias/metabolismo , Shewanella/metabolismo , Fuentes de Energía Bioeléctrica , Técnicas Biosensibles/métodos
5.
Cell Rep Methods ; 4(6): 100791, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38848714

RESUMEN

Characterizing neurons by their electrophysiological phenotypes is essential for understanding the neural basis of behavioral and cognitive functions. Technological developments have enabled the collection of hundreds of neural recordings; this calls for new tools capable of performing feature extraction efficiently. To address the urgent need for a powerful and accessible tool, we developed ElecFeX, an open-source MATLAB-based toolbox that (1) has an intuitive graphical user interface, (2) provides customizable measurements for a wide range of electrophysiological features, (3) processes large-size datasets effortlessly via batch analysis, and (4) yields formatted output for further analysis. We implemented ElecFeX on a diverse set of neural recordings; demonstrated its functionality, versatility, and efficiency in capturing electrical features; and established its significance in distinguishing neuronal subgroups across brain regions and species. ElecFeX is thus presented as a user-friendly toolbox to benefit the neuroscience community by minimizing the time required for extracting features from their electrophysiological datasets.


Asunto(s)
Fenómenos Electrofisiológicos , Análisis de la Célula Individual , Programas Informáticos , Fenómenos Electrofisiológicos/fisiología , Animales , Análisis de la Célula Individual/métodos , Neuronas/fisiología , Humanos , Encéfalo/fisiología , Ratones , Ratas
6.
Adv Sci (Weinh) ; : e2400560, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874331

RESUMEN

Intrinsic plasticity, a fundamental process enabling neurons to modify their intrinsic properties, plays a crucial role in shaping neuronal input-output function and is implicated in various neurological and psychiatric disorders. Despite its importance, the underlying molecular mechanisms of intrinsic plasticity remain poorly understood. In this study, a new ubiquitin ligase adaptor, protein tyrosine phosphatase receptor type N (PTPRN), is identified as a regulator of intrinsic neuronal excitability in the context of temporal lobe epilepsy. PTPRN recruits the NEDD4 Like E3 Ubiquitin Protein Ligase (NEDD4L) to NaV1.2 sodium channels, facilitating NEDD4L-mediated ubiquitination, and endocytosis of NaV1.2. Knockout of PTPRN in hippocampal granule cells leads to augmented NaV1.2-mediated sodium currents and higher intrinsic excitability, resulting in increased seizure susceptibility in transgenic mice. Conversely, adeno-associated virus-mediated delivery of PTPRN in the dentate gyrus region decreases intrinsic excitability and reduces seizure susceptibility. Moreover, the present findings indicate that PTPRN exerts a selective modulation effect on voltage-gated sodium channels. Collectively, PTPRN plays a significant role in regulating intrinsic excitability and seizure susceptibility, suggesting a potential strategy for precise modulation of NaV1.2 channels' function.

7.
Dent Mater ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38902144

RESUMEN

OBJECTIVES: The purpose of this study was evaluating the performance of new Bis-EFMA based bulk-fill composites with common methacrylate based composites and commercial dental composites. METHODS: The Bis-EFMA monomer was synthesized and the novel Bis-EFMA based bulk-fill composites were prepared. The resin composite samples were co-cultured with human gingival epithelial cells and human dental pulp stem cells to test the biocompatibility. The edge adaptation was observed under a combination of stereoscope and scanning electron microscope. The internal hardness was measured using a Vickers microhardness tester after one-time filling of cavities prepared in extracted teeth. After friction and wear test on the surface of the resin composites, the surface morphology and volume wear of each group were measured by the optical profilometer. The color stability was measured by a colorimeter. RESULTS: Direct contact with human gingival epithelial cells and human dental pulp stem cells did not cause significant changes in their growth density and morphology, indicating good biocompatibility of Bis-EFMA group (p > 0.05). The continuous margin proportion of the Bis-EFMA group was as good as commercial bulk-fill composites (p > 0.05). The sectional microhardness results showed that the Bis-EFMA group had the highest microhardness. After the friction and wear test, the volume wear of the Bis-EFMA group was minimal, indicating its good wear resistance and mechanical strength. Color changes in all resin groups after 28 days of immersion were within the clinically acceptable range. SIGNIFICANCE: The addition of Bis-EFMA demonstrated excellent biocompatibility, edge adaptation and color stability comparable to commonly used clinical bulk-fill composites, along with preferable mechanical strength, friction and wear resistance. Bis-EFMA based bulk-fill composites have the potential to be employed as a bulk filling material in commercial dental composite applications.

8.
J Hazard Mater ; 474: 134740, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38805821

RESUMEN

Construction of air filter membranes bearing prominent collecting and transferring capability is highly desirable for detecting airborne pathogens but remains challenging. Here, a hyaluronic acid air filter membrane (HAFM) with tunable heterogeneous micro-nano porous structures is straightforwardly constructed through the ethanol-induced phase separation strategy. Airborne pathogens can be trapped and collected by HAFM with high performance due to the ideal trade-off between removal efficiency and pressure drop. By exempting the sample elution and extraction processes, the HAFM after filtration sampling can not only directly disperse on the agar plate for colony culture but also turn to an aqueous solution for centrifugal enrichment, which significantly reduces the damage and losses of the captured microorganisms. The following combination with ATP bioluminescence endows the HAFM with a real-time quantitative detection function for the captured airborne pathogens. Benefiting from high-efficiency sampling and non-traumatic transfer of airborne pathogens, the real-world bioaerosol concentration can be facilely evaluated by the HAFM-based ATP assay. This work thus not only provides a feasible strategy to fabricate air filter membranes for efficient microbial collection and enrichment but also sheds light on designing advanced protocols for real-time detection of bioaerosols in the field.


Asunto(s)
Filtros de Aire , Microbiología del Aire , Membranas Artificiales , Filtros de Aire/microbiología , Filtración/instrumentación , Aerosoles/análisis , Monitoreo del Ambiente/métodos , Adenosina Trifosfato/análisis , Bacterias/aislamiento & purificación
9.
PLoS One ; 19(5): e0295648, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38820519

RESUMEN

BACKGROUND: Gender disparity is pervasive in academic medicine. This study aimed to assess the disparity between men and women with regard to first and senior author positions in primary studies on liver cancer over the last two decades. METHODS: We conducted a review of articles published in high-impact factor journals of the field of Gastroenterology and Hepatology in 2005, 2010, 2015 and 2020. First and senior authors of all ages were considered as the study population. The authors' genders were determined using the online artificial intelligence tool genderize.io (https://genderize.io/). The disparity between men and women authors was assessed using the linear-by-linear association test. RESULTS: 665 original articles from 10 journals were reviewed. The point prevalence of first women authors was 25.0% compared with 75.0% for men. The point prevalence of senior women authors was 16.3% compared with 83.7% for men. From 2000 to 2020, the proportion of first women authors increased 14.4% to 26.8% compared with 85.6%-73.2% for men (P = 0.009), and the proportion of senior women authors increased from 7.4% to 19.5%, compared with 92.6%-80.5% for men (P = 0.035). The factor independently associated with a reduced representation of women among first authors was the region of author. The factor independently associated with a reduced representation of women among senior authors was the impact factor of journals. CONCLUSION: The findings indicated a remarkable increase in the proportion of women, both first and senior authors, over the past two decades in the field of liver cancers. However, the representation of women authors in this area is far less than that of men.


Asunto(s)
Gastroenterología , Neoplasias Hepáticas , Humanos , Femenino , Masculino , Neoplasias Hepáticas/epidemiología , Gastroenterología/estadística & datos numéricos , Autoria , Publicaciones Periódicas como Asunto/estadística & datos numéricos , Factor de Impacto de la Revista , Factores Sexuales , Sexismo/estadística & datos numéricos , Investigación Biomédica
10.
medRxiv ; 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38712223

RESUMEN

Early identification of Alzheimer's disease (AD) and AD-related dementias (ADRD) has high clinical significance, both because of the potential to slow decline through initiating FDA-approved therapies and managing modifiable risk factors, and to help persons living with dementia and their families to plan before cognitive loss makes doing so challenging. However, substantial racial and ethnic disparities in early diagnosis currently lead to additional inequities in care, urging accurate and inclusive risk assessment programs. In this study, we trained an artificial intelligence foundation model to represent the electronic health records (EHR) data with a vast cohort of 1.2 million patients within a large health system. Building upon this foundation EHR model, we developed a predictive Transformer model, named TRADE, capable of identifying risks for AD/ADRD and mild cognitive impairment (MCI), by analyzing the past sequential visit records. Amongst individuals 65 and older, our model was able to generate risk predictions for various future timeframes. On the held-out validation set, our model achieved an area under the receiver operating characteristic (AUROC) of 0.772 (95% CI: 0.770, 0.773) for identifying the AD/ADRD/MCI risks in 1 year, and AUROC of 0.735 (95% CI: 0.734, 0.736) in 5 years. The positive predictive values (PPV) in 5 years among individuals with top 1% and 5% highest estimated risks were 39.2% and 27.8%, respectively. These results demonstrate significant improvements upon the current EHR-based AD/ADRD/MCI risk assessment models, paving the way for better prognosis and management of AD/ADRD/MCI at scale.

11.
Heliyon ; 10(9): e30169, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38699022

RESUMEN

Nauclea officinalis, as a Chinese medicine in Hainan province, had the effect of treating lower limb ulcers, burn infections. In this paper, we studied the effect of Strictosamide (STR), the main bioactive compound in Nauclea officinals, on wound healing and explored its internal mechanism. Firstly, the wound healing potential of STR was evaluated in a rat model, demonstrating its ability to expedite wound healing, mitigate inflammatory infiltration, and enhance collagen deposition. Additionally, immunofluorescence analysis revealed that STR up-regulated the expression of CD31 and PCNA. Subsequently, target prediction, protein-protein interaction (PPI), gene ontology (GO), and pathway enrichment analyses were used to obtain potential targets, specific biological processes, and molecular mechanisms of STR for the potential treatment of wound healing. Furthermore, molecular docking was conducted to predict the binding affinity between STR and its associated targets. Additionally, in vivo and in vitro experiments confirmed that STR could increase the expression of P-PI3K, P-AKT and P-mTOR by activating the PI3K/AKT signaling pathway. In summary, this study provided a new explanation for the mechanism by which STR promotes wound healing through network pharmacology, suggesting that STR may be a new candidate for treating wound.

12.
STAR Protoc ; 5(2): 102976, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38635398

RESUMEN

Biological functions of glycans are intimately linked to fine details in branches and linkages, which make structural identification extremely challenging. Here, we present a protocol for automated N-glycan sequencing using multi-stage mass spectrometry (MSn). We describe steps for release/purification and derivation of glycans and procedures for MSn scanning. We then detail "glycan intelligent precursor selection" to computationally guide MSn experiments. The protocol can be used for both discrete individual glycans and isomeric glycan mixtures. For complete details on the use and execution of this protocol, please refer to Sun et al.,1 Huang et al.,2 and Huang et al.3.


Asunto(s)
Espectrometría de Masas , Polisacáridos , Polisacáridos/análisis , Polisacáridos/química , Espectrometría de Masas/métodos , Análisis de Secuencia/métodos
13.
Chem Commun (Camb) ; 60(35): 4699-4702, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38595270

RESUMEN

Two typical Cu-based complex catalysts with piperazine (PR) and p-phenylenediamine (pPDA) ligands were designed to elucidate whether the ligands can tailor the reduction behavior of the Cu species and thus modulate their electrochemical CO2 reduction reaction (eCO2RR) activity. Specifically, Cu-PR underwent a significant in situ transformation into Cu nanoparticles enriched with a Cuδ+/Cu0 interface for high eCO2RR activity, compared to Cu-pPDA. This finding reveals the importance of ligand engineering in modulating the eCO2RR performance of Cu-based complexes.

14.
Gut ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38684237
15.
Sensors (Basel) ; 24(6)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38544272

RESUMEN

The adoption of Industry 4.0 technologies in manufacturing systems has accelerated in recent years, with a shift towards understanding operators' well-being and resilience within the context of creating a human-centric manufacturing environment. In addition to measuring physical workload, monitoring operators' cognitive workload is becoming a key element in maintaining a healthy and high-performing working environment in future digitalized manufacturing systems. The current approaches to the measurement of cognitive workload may be inadequate when human operators are faced with a series of new digitalized technologies, where their impact on operators' mental workload and performance needs to be better understood. Therefore, a new method for measuring and determining the cognitive workload is required. Here, we propose a new method for determining cognitive-workload indices in a human-centric environment. The approach provides a method to define and verify the relationships between the factors of task complexity, cognitive workload, operators' level of expertise, and indirectly, the operator performance level in a highly digitalized manufacturing environment. Our strategy is tested in a series of experiments where operators perform assembly tasks on a Wankel Engine block. The physiological signals from heart-rate variability and pupillometry bio-markers of 17 operators were captured and analysed using eye-tracking and electrocardiogram sensors. The experimental results demonstrate statistically significant differences in both cardiac and pupillometry-based cognitive load indices across the four task complexity levels (rest, low, medium, and high). Notably, these developed indices also provide better indications of cognitive load responding to changes in complexity compared to other measures. Additionally, while experts appear to exhibit lower cognitive loads across all complexity levels, further analysis is required to confirm statistically significant differences. In conclusion, the results from both measurement sensors are found to be compatible and in support of the proposed new approach. Our strategy should be useful for designing and optimizing workplace environments based on the cognitive load experienced by operators.


Asunto(s)
Industrias , Carga de Trabajo , Humanos , Carga de Trabajo/psicología , Frecuencia Cardíaca/fisiología , Tecnología , Cognición , Análisis y Desempeño de Tareas
16.
Sci Adv ; 10(12): eadk9484, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38507477

RESUMEN

Epileptogenesis, arising from alterations in synaptic strength, shares mechanistic and phenotypic parallels with memory formation. However, direct evidence supporting the existence of seizure memory remains scarce. Leveraging a conditioned seizure memory (CSM) paradigm, we found that CSM enabled the environmental cue to trigger seizure repetitively, and activating cue-responding engram cells could generate CSM artificially. Moreover, cue exposure initiated an analogous process of memory reconsolidation driven by mammalian target of rapamycin-brain-derived neurotrophic factor signaling. Pharmacological targeting of the mammalian target of rapamycin pathway within a limited time window reduced seizures in animals and interictal epileptiform discharges in patients with refractory seizures. Our findings reveal a causal link between seizure memory engrams and seizures, which leads us to a deeper understanding of epileptogenesis and points to a promising direction for epilepsy treatment.


Asunto(s)
Electroencefalografía , Epilepsia , Animales , Humanos , Convulsiones/etiología , Sirolimus , Serina-Treonina Quinasas TOR , Mamíferos
17.
Elife ; 122024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38289338

RESUMEN

Quinidine has been used as an anticonvulsant to treat patients with KCNT1-related epilepsy by targeting gain-of-function KCNT1 pathogenic mutant variants. However, the detailed mechanism underlying quinidine's blockade against KCNT1 (Slack) remains elusive. Here, we report a functional and physical coupling of the voltage-gated sodium channel NaV1.6 and Slack. NaV1.6 binds to and highly sensitizes Slack to quinidine blockade. Homozygous knockout of NaV1.6 reduces the sensitivity of native sodium-activated potassium currents to quinidine blockade. NaV1.6-mediated sensitization requires the involvement of NaV1.6's N- and C-termini binding to Slack's C-terminus and is enhanced by transient sodium influx through NaV1.6. Moreover, disrupting the Slack-NaV1.6 interaction by viral expression of Slack's C-terminus can protect against SlackG269S-induced seizures in mice. These insights about a Slack-NaV1.6 complex challenge the traditional view of 'Slack as an isolated target' for anti-epileptic drug discovery efforts and can guide the development of innovative therapeutic strategies for KCNT1-related epilepsy.


Asunto(s)
Epilepsia , Canal de Sodio Activado por Voltaje NAV1.6 , Quinidina , Animales , Humanos , Ratones , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Homocigoto , Canal de Sodio Activado por Voltaje NAV1.6/genética , Proteínas del Tejido Nervioso/genética , Quinidina/farmacología , Sodio
18.
Methods Mol Biol ; 2771: 1-5, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38285383

RESUMEN

This procedure provides a comprehensive method for isolating double-stranded RNA (dsRNA) that relies on the different solubility of various nucleic acids in lithium chloride (LiC1). The approach offers several notable advantages including simplicity, avoidance of enzymatic treatments, and the ability to obtain relatively high yields of undegraded dsRNA over other conventional techniques. Moreover, it allows for the separation of different groups of cellular and viral nucleic acids from a single tissue sample. This method was further improved to increase the purity of dsRNA using plant tissues infected by RNA viruses.


Asunto(s)
Cloruro de Litio , Ácidos Nucleicos , ARN Bicatenario , Fraccionamiento Químico , Solubilidad
19.
Angew Chem Int Ed Engl ; 63(5): e202317949, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38078904

RESUMEN

Solid-state lithium (Li) batteries promise both high energy density and safety while existing solid-state electrolytes (SSEs) fail to satisfy the rigorous requirements of battery operations. Herein, novel polyoxometalate SSEs, Li3 PW12 O40 and Li3 PMo12 O40 , are synthesized, which exhibit excellent interfacial compatibility with electrodes and chemical stability, overcoming the limitations of conventional SSEs. A high ionic conductivity of 0.89 mS cm-1 and a low activation energy of 0.23 eV are obtained due to the optimized three-dimensional Li+ migration network of Li3 PW12 O40 . Li3 PW12 O40 exhibits a wide window of electrochemical stability that can both accommodate the Li anode and high-voltage cathodes. As a result, all-solid-state Li metal batteries fabricated with Li/Li3 PW12 O40 /LiNi0.5 Co0.2 Mn0.3 O2 display a stable cycling up to 100 cycles with a cutoff voltage of 4.35 V and an areal capacity of more than 4 mAh cm-2 , as well as a cost-competitive SSEs price of $5.68 kg-1 . Moreover, Li3 PMo12 O40 homologous to Li3 PW12 O40 was obtained via isomorphous substitution, which formed a low-resistance interface with Li3 PW12 O40 . Applications of Li3 PW12 O40 and Li3 PMo12 O40 in Li-air batteries further demonstrate that long cycle life (650 cycles) can be achieved. This strategy provides a facile, low-cost strategy to construct efficient and scalable solid polyoxometalate electrolytes for high-energy solid-state Li metal batteries.

20.
Nucleic Acids Res ; 52(D1): D1097-D1109, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37831118

RESUMEN

Antibody-drug conjugates (ADCs) are a class of innovative biopharmaceutical drugs, which, via their antibody (mAb) component, deliver and release their potent warhead (a.k.a. payload) at the disease site, thereby simultaneously improving the efficacy of delivered therapy and reducing its off-target toxicity. To design ADCs of promising efficacy, it is crucial to have the critical data of pharma-information and biological activities for each ADC. However, no such database has been constructed yet. In this study, a database named ADCdb focusing on providing ADC information (especially its pharma-information and biological activities) from multiple perspectives was thus developed. Particularly, a total of 6572 ADCs (359 approved by FDA or in clinical trial pipeline, 501 in preclinical test, 819 with in-vivo testing data, 1868 with cell line/target testing data, 3025 without in-vivo/cell line/target testing data) together with their explicit pharma-information was collected and provided. Moreover, a total of 9171 literature-reported activities were discovered, which were identified from diverse clinical trial pipelines, model organisms, patient/cell-derived xenograft models, etc. Due to the significance of ADCs and their relevant data, this new database was expected to attract broad interests from diverse research fields of current biopharmaceutical drug discovery. The ADCdb is now publicly accessible at: https://idrblab.org/adcdb/.


Asunto(s)
Bases de Datos Farmacéuticas , Descubrimiento de Drogas , Inmunoconjugados , Animales , Humanos , Anticuerpos/uso terapéutico , Antineoplásicos/uso terapéutico , Productos Biológicos , Línea Celular Tumoral , Modelos Animales de Enfermedad , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...