Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(9): 114723, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39277861

RESUMEN

Neurovascular coupling (NVC) and neurometabolic coupling (NMC) provide the basis for functional magnetic resonance imaging and positron emission tomography to map brain neurophysiology. While increases in neuronal activity are often accompanied by increases in blood oxygen delivery and oxidative metabolism, these observations are not the rule. This decoupling is important when interpreting brain network organization (e.g., resting-state functional connectivity [RSFC]) because it is unclear whether changes in NMC/NVC affect RSFC measures. We leverage wide-field optical imaging in Thy1-jRGECO1a mice to map cortical calcium activity in pyramidal neurons, flavoprotein autofluorescence (representing oxidative metabolism), and hemodynamic activity during wake and ketamine/xylazine anesthesia. Spontaneous dynamics of all contrasts exhibit patterns consistent with RSFC. NMC/NVC relative to excitatory activity varies over the cortex. Ketamine/xylazine profoundly alters NVC but not NMC. Compared to awake RSFC, ketamine/xylazine affects metabolic-based connectomes moreso than hemodynamic-based measures of RSFC. Anesthesia-related differences in NMC/NVC timing do not appreciably alter RSFC structure.


Asunto(s)
Anestesia , Encéfalo , Hemodinámica , Acoplamiento Neurovascular , Vigilia , Animales , Ratones , Vigilia/fisiología , Encéfalo/metabolismo , Encéfalo/fisiología , Neuronas/metabolismo , Ketamina/farmacología , Masculino , Xilazina/farmacología , Ratones Endogámicos C57BL
3.
Alzheimers Dement ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967283

RESUMEN

INTRODUCTION: Microtubule (MT) stability is crucial for proper neuronal function. Understanding MT dysregulation is critical for connecting amyloid beta (Aß) and tau-based degenerative events and early changes in presymptomatic Alzheimer's disease (AD). Herein we present positron emission tomography (PET) imaging properties of our MT-PET radiotracer, [11C]MPC-6827, in multiple established AD mouse models. METHODS: Longitudinal PET, biodistribution, autoradiography, immunohistochemistry, and behavioral studies were conducted at multiple time points in APPswe/PSEN1dE9 (APP/PS1), P301S-PS19 (P301S), 5xFAD, and age-matched control mice. RESULTS: Longitudinal [11C]MPC-6827 brain imaging showed significant increases in APP/PS1, P301S, and 5xFAD mice compared to controls. Longitudinal MT-PET correlated positively with biodistribution, autoradiography, and immunohistochemistry results and negatively with behavior data. DISCUSSION: Our study demonstrated significant longitudinal [11C]MPC-6827 PET increases in multiple AD mouse models for the first time. Strong correlations between PET and biomarker data underscored the interplay of MT destabilization, amyloid, and tau pathology in AD. These results suggest [11C]MPC-6827 PET as a promising tool for monitoring MT dysregulation early in AD progression. HIGHLIGHTS: Longitudinal positron emission tomography (PET) imaging studies using [11C]MPC-6827 in multiple established Alzheimer's disease (AD) mouse models revealed an early onset of microtubule dysregulation, with significant changes in brain radiotracer uptake evident from 2 to 4 months of age. Intra-group analysis showed a progressive increase in microtubule dysregulation with increasing AD burden, supported by significant correlations between PET imaging data and biodistribution, autoradiography, and molecular pathological markers. [11C]MPC-6827 PET imaging demonstrated its efficacy in detecting early microtubule alterations preceding observable behavioral changes in AD mouse models, suggesting its potential for early AD imaging. The inclusion of the 5xFAD mouse model further elucidated the impact of amyloid beta (Aß) toxicity on inducing tau hyperphosphorylation-mediated microtubule dysregulation, highlighting the versatility of [11C]MPC-6827 in delineating various aspects of AD pathology. Our study provides immediate clarity on high uptake of the microtubule-based radiotracer in AD brains in a longitudinal setting, which directly informs clinical utility in Aß/tau-based studies.

4.
Bioorg Med Chem Lett ; 111: 129906, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39059565

RESUMEN

Despite recent advancements in imaging (amyloid-PET & tau-PET) and fluid (Aß42/Aß40 & Aß42/ptau) biomarkers, the current standard for in vivo assessment of AD, diagnosis and prediction of Alzheimer's disease (AD) remains challenging. We demonstrated in nonhuman primates (NHP) that increased plasma and cerebrospinal fluid (CSF) glucose correlated with decreased CSF Aß42 and CSF Aß40, a hallmark of plaque promoting pathogenesis. Together, our findings demonstrate that altered glucose homeostasis and insulin resistance are associated with Aß and amyloid in rodent and NHP models. This warranted further exploration into the dynamics of altered brain metabolism in the NHP model of T2D, cross referenced with CSF and blood-based AD markers. Preliminary dual PET ([11C]acetoacetate ([11C]AcAc) and [18F]fluorodeoxyglucose ([18F]FDG) imaging studies were conducted in an aged cohort of NHPs classified as T2D (n = 5) and pre-diabetic (n = 1) along with corresponding plasma and CSF samples for metabolite analysis. [11C]AcAc and [18F]FDG PET brain standard uptake values (SUV) were highly positively associated (r = 0.88, p = 0.02) in the T2D and pre-diabetic NHPs. Age was not significantly associated with brain SUV (age range 16.5-23.5 years old). Metabolic measures were positively correlated with brain [18F]FDG and CSF Aß42:40 was positively correlated to fasting glucose values. Although our findings suggest moderate correlations, this study further elucidates that peripheral insulin resistance and poor glycemia control alter AD-related pathology, illustrating how T2D is a risk factor for AD.


Asunto(s)
Acetoacetatos , Diabetes Mellitus Tipo 2 , Fluorodesoxiglucosa F18 , Tomografía de Emisión de Positrones , Animales , Fluorodesoxiglucosa F18/química , Diabetes Mellitus Tipo 2/diagnóstico por imagen , Acetoacetatos/química , Radioisótopos de Carbono , Radiofármacos/química , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Macaca mulatta
5.
Elife ; 132024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38860652

RESUMEN

Adolescence is characterized by changes in reward-related behaviors, social behaviors, and decision-making. These behavioral changes are necessary for the transition into adulthood, but they also increase vulnerability to the development of a range of psychiatric disorders. Major reorganization of the dopamine system during adolescence is thought to underlie, in part, the associated behavioral changes and increased vulnerability. Here, we utilized fast scan cyclic voltammetry and microdialysis to examine differences in dopamine release as well as mechanisms that underlie differential dopamine signaling in the nucleus accumbens (NAc) core of adolescent (P28-35) and adult (P70-90) male rats. We show baseline differences between adult and adolescent-stimulated dopamine release in male rats, as well as opposite effects of the α6 nicotinic acetylcholine receptor (nAChR) on modulating dopamine release. The α6-selective blocker, α-conotoxin, increased dopamine release in early adolescent rats, but decreased dopamine release in rats beginning in middle adolescence and extending through adulthood. Strikingly, blockade of GABAA and GABAB receptors revealed that this α6-mediated increase in adolescent dopamine release requires NAc GABA signaling to occur. We confirm the role of α6 nAChRs and GABA in mediating this effect in vivo using microdialysis. Results herein suggest a multisynaptic mechanism potentially unique to the period of development that includes early adolescence, involving acetylcholine acting at α6-containing nAChRs to drive inhibitory GABA tone on dopamine release.


During adolescence, chemicals and cells in the brain undergo significant reorganization. These changes are thought to be why teenagers are often more vulnerable to developing drug addictions and psychiatric disorders. However, it is not fully understood how the brain transforms during this transitional period. Most of this reorganization takes place in the dopamine system which is responsible for triggering pleasurable sensations, including the feeling of reward after taking drugs. In 2020, a group of researchers found that adolescent male rats released less of the chemical dopamine in a part of the brain involved in the reward pathway than adult rats. But it was unclear what was causing this age-related effect. To investigate, Iacino et al. ­ including some of the researchers involved in the 2020 study ­blocked a family of receptors called nAChRs (short for nicotinic acetylcholine receptors) in the brain cells of male rats. These receptors bind to a neurotransmitter called acetylcholine which stimulates cells to release dopamine. Iacino et al. found that inhibiting a specific type of nAChR led to a decrease in dopamine in adult rats, but an increase in early adolescent rats. However, this effect was not observed when other types of nAChRs were inhibited. Iacino et al. found that the adolescent male rats also had higher levels of another neurotransmitter called GABA which blocks the release of dopamine. This led them to hypothesize that the reduced levels of dopamine in early adolescence may be due to increased levels of GABA, which is secreted by specialized cells which also have nAChRs on their surface. To investigate, Iacino et al. blocked two receptors for GABA that are found on dopamine-releasing neurons before exposing the rats to the nAChR inhibitor. This caused the adolescent rats to release less dopamine following nAChR inhibition, similar to the levels observed in adult rats. These findings suggest that the nAChR inhibitor leads to a rise in dopamine by stopping cells from releasing GABA ­ but only in adolescent rats. The work of Iacino et al. demonstrates how the dopamine system differs in adolescence, which may provide new insights in to why teenagers are often more susceptible to addiction. For instance, nicotine, the addictive substance in cigarettes, can also bind to nAChRs and make them less sensitive to acetylcholine. This may reduce the release of GABA, resulting in more dopamine being released which is then sensed as a reward by the teenage brain. However, more research is needed to fully understand how this brain circuit is modulated by nicotine intake.


Asunto(s)
Acetilcolina , Dopamina , Núcleo Accumbens , Ácido gamma-Aminobutírico , Masculino , Ratas , Acetilcolina/metabolismo , Dopamina/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Núcleo Accumbens/metabolismo , Ratas Sprague-Dawley , Receptores Nicotínicos/metabolismo , Animales
6.
bioRxiv ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38464274

RESUMEN

Metabolism plays an important role in the maintenance of vigilance states (e.g. wake, NREM, and REM). Brain lactate fluctuations are a biomarker of sleep. Increased interstitial fluid (ISF) lactate levels are necessary for arousal and wake-associated behaviors, while decreased ISF lactate is required for sleep. ATP-sensitive potassium (K ATP ) channels couple glucose-lactate metabolism with neuronal excitability. Therefore, we explored how deletion of neuronal K ATP channel activity (Kir6.2-/- mice) affected the relationship between glycolytic flux, neuronal activity, and sleep/wake homeostasis. Kir6.2-/- mice shunt glucose towards glycolysis, reduce neurotransmitter synthesis, dampen cortical EEG activity, and decrease arousal. Kir6.2-/- mice spent more time awake at the onset of the light period due to altered ISF lactate dynamics. Together, we show that Kir6.2-K ATP channels act as metabolic sensors to gate arousal by maintaining the metabolic stability of each vigilance state and providing the metabolic flexibility to transition between states. Highlights: Glycolytic flux is necessary for neurotransmitter synthesis. In its absence, neuronal activity is compromised causing changes in arousal and vigilance states despite sufficient energy availability. With Kir6.2-K ATP channel deficiency, the ability to both maintain and shift between different vigilance states is compromised due to changes in glucose utilization. Kir6.2-K ATP channels are metabolic sensors under circadian control that gate arousal and sleep/wake transitions.

7.
J Extracell Vesicles ; 13(1): e12398, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38191961

RESUMEN

Brain-derived extracellular vesicles (EVs) play an active role in Alzheimer's disease (AD), relaying important physiological information about their host tissues. The internal cargo of EVs is protected from degradation, making EVs attractive AD biomarkers. However, it is unclear how circulating EVs relate to EVs isolated from disease-vulnerable brain regions. We developed a novel method for collecting EVs from the hippocampal interstitial fluid (ISF) of live mice. EVs (EVISF ) were isolated via ultracentrifugation and characterized by nanoparticle tracking analysis, immunogold labelling, and flow cytometry. Mass spectrometry and proteomic analyses were performed on EVISF cargo. EVISF were 40-150 nm in size and expressed CD63, CD9, and CD81. Using a model of cerebral amyloidosis (e.g., APPswe, PSEN1dE9 mice), we found protein concentration increased but protein diversity decreased with Aß deposition. Genotype, age, and Aß deposition modulated proteostasis- and immunometabolic-related pathways. Changes in the microglial EVISF proteome were sexually dimorphic and associated with a differential response of plaque associated microglia. We found that female APP/PS1 mice have more amyloid plaques, less plaque associated microglia, and a less robust- and diverse- EVISF microglial proteome. Thus, in vivo microdialysis is a novel technique for collecting EVISF and offers a unique opportunity to explore the role of EVs in AD.


Asunto(s)
Enfermedad de Alzheimer , Vesículas Extracelulares , Placa Aterosclerótica , Femenino , Animales , Ratones , Proteoma , Líquido Extracelular , Microglía , Proteómica , Hipocampo
8.
Aging Dis ; 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37611907

RESUMEN

Type 2 diabetes mellitus (T2DM) is common and increasing in prevalence worldwide, with devastating public health consequences. While peripheral insulin resistance is a key feature of most forms of T2DM and has been investigated for over a century, research on brain insulin resistance (BIR) has more recently been developed, including in the context of T2DM and non-diabetes states. Recent data support the presence of BIR in the aging brain, even in non-diabetes states, and found that BIR may be a feature in Alzheimer's disease (AD) and contributes to cognitive impairment. Further, therapies used to treat T2DM are now being investigated in the context of AD treatment and prevention, including insulin. In this review, we offer a definition of BIR, and present evidence for BIR in AD; we discuss the expression, function, and activation of the insulin receptor (INSR) in the brain; how BIR could develop; tools to study BIR; how BIR correlates with current AD hallmarks; and regional/cellular involvement of BIR. We close with a discussion on resilience to both BIR and AD, how current tools can be improved to better understand BIR, and future avenues for research. Overall, this review and position paper highlights BIR as a plausible therapeutic target for the prevention of cognitive decline and dementia due to AD.

9.
Geroscience ; 45(5): 2785-2803, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37261678

RESUMEN

Cellular senescence increases with aging and results in secretion of pro-inflammatory factors that induce local and systemic tissue dysfunction. We conducted the first preclinical trial in a relevant middle-aged nonhuman primate (NHP) model to allow estimation of the main translatable effects of the senolytic combination dasatinib (D) and quercetin (Q), with and without caloric restriction (CR). A multi-systemic survey of age-related changes, including those on immune cells, adipose tissue, the microbiome, and biomarkers of systemic organ and metabolic health are reported. Age-, weight-, sex-, and glycemic control-matched NHPs (D + Q, n = 9; vehicle [VEH] n = 7) received two consecutive days of D + Q (5 mg/kg + 50 mg/kg) monthly for 6 months, where in month six, a 10% CR was implemented in both D + Q and VEH NHPs to induce equal weight reductions. D + Q reduced senescence marker gene expressions in adipose tissue and circulating PAI-1 and MMP-9. Improvements were observed in immune cell types with significant anti-inflammatory shifts and reductions in microbial translocation biomarkers, despite stable microbiomes. Blood urea nitrogen showed robust improvements with D + Q. CR resulted in significant positive body composition changes in both groups with further improvement in immune cell profiles and decreased GDF15 (p = 0.05), and the interaction of D + Q and CR dramatically reduced glycosylated hemoglobin A1c (p = 0.03). This work indicates that 6 months of intermittent D + Q exposure is safe and may combat inflammaging via immune benefits and improved intestinal barrier function. We also saw renal benefits, and with CR, improved metabolic health. These data are intended to provide direction for the design of larger controlled intervention trials in older patients.


Asunto(s)
Quercetina , Senoterapéuticos , Animales , Humanos , Persona de Mediana Edad , Anciano , Dasatinib/farmacología , Quercetina/farmacología , Ensayos Clínicos como Asunto , Envejecimiento , Inflamación , Biomarcadores , Primates
10.
JCI Insight ; 8(10)2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37129980

RESUMEN

Elevated blood glucose levels, or hyperglycemia, can increase brain excitability and amyloid-ß (Aß) release, offering a mechanistic link between type 2 diabetes and Alzheimer's disease (AD). Since the cellular mechanisms governing this relationship are poorly understood, we explored whether ATP-sensitive potassium (KATP) channels, which couple changes in energy availability with cellular excitability, play a role in AD pathogenesis. First, we demonstrate that KATP channel subunits Kir6.2/KCNJ11 and SUR1/ABCC8 were expressed on excitatory and inhibitory neurons in the human brain, and cortical expression of KCNJ11 and ABCC8 changed with AD pathology in humans and mice. Next, we explored whether eliminating neuronal KATP channel activity uncoupled the relationship between metabolism, excitability, and Aß pathology in a potentially novel mouse model of cerebral amyloidosis and neuronal KATP channel ablation (i.e., amyloid precursor protein [APP]/PS1 Kir6.2-/- mouse). Using both acute and chronic paradigms, we demonstrate that Kir6.2-KATP channels are metabolic sensors that regulate hyperglycemia-dependent increases in interstitial fluid levels of Aß, amyloidogenic processing of APP, and amyloid plaque formation, which may be dependent on lactate release. These studies identify a potentially new role for Kir6.2-KATP channels in AD and suggest that pharmacological manipulation of Kir6.2-KATP channels holds therapeutic promise in reducing Aß pathology in patients with diabetes or prediabetes.


Asunto(s)
Enfermedad de Alzheimer , Diabetes Mellitus Tipo 2 , Hiperglucemia , Humanos , Ratones , Animales , Canales KATP/metabolismo , Enfermedad de Alzheimer/patología , Diabetes Mellitus Tipo 2/complicaciones , Glucosa , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA