Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Blood Adv ; 8(15): 3972-3984, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-38830132

RESUMEN

ABSTRACT: Smoldering multiple myeloma (SMM) is an asymptomatic plasma cell (PC) neoplasm that may evolve with variable frequency into multiple myeloma (MM). SMM is initiated by chromosomal translocations involving the immunoglobulin heavy-chain locus or by hyperdiploidy and evolves through acquisition of additional genetic lesions. In this scenario, we aimed at establishing a reliable analysis pipeline to infer genomic lesions from transcriptomic analysis, by combining single-cell RNA sequencing (scRNA-seq) with B-cell receptor sequencing and copy number abnormality (CNA) analysis to identify clonal PCs at the genetic level along their specific transcriptional landscape. We profiled 20 465 bone marrow PCs derived from 5 patients with SMM/MM and unbiasedly identified clonal and polyclonal PCs. Hyperdiploidy, t(11;14), and t(6;14) were identified at the scRNA level by analysis of chimeric reads. Subclone functional analysis was improved by combining transcriptome with CNA analysis. As examples, we illustrate the different functional properties of a light-chain escape subclone in SMM and of different B-cell and PC subclones in a patient affected by Wäldenstrom macroglobulinemia and SMM. Overall, our data provide a proof of principle for inference of clinically relevant genotypic data from scRNA-seq, which in turn will refine functional annotation of the clonal architecture of PC dyscrasias.


Asunto(s)
Mieloma Múltiple , RNA-Seq , Análisis de la Célula Individual , Humanos , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Análisis de la Célula Individual/métodos , Genómica/métodos , Células Plasmáticas/metabolismo , Células Plasmáticas/patología , Perfilación de la Expresión Génica , Análisis de Expresión Génica de una Sola Célula
3.
Ann Hematol ; 102(6): 1409-1420, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37079068

RESUMEN

Here, we reviewed clinical-morphological data and investigated mutational profiles by NGS in a single-center series of 58 consecutive MPN-SVT patients admitted to our hospital between January 1979 and November 2021. We identified 15.5% of PV, 13.8% of ET, 34.5% of PMF, 8.6% of SMF and 27.6% of MPN-U. Most cases (84.5%) carried JAK2V617F mutation, while seven patients were characterized by other molecular markers, namely MPL in four and CALR mutations in three cases. NGS was performed in 54 (93.1%) cases: the most frequent additional mutations were found in TET2 (27.8%) and DNMT3A (16.7%) genes, whereas 25 (46.3%) patients had no additional mutation. Cases with JAK2V617F homozygosity had a higher median number of additional mutations than those with low allele burden. More importantly, all cases of leukemic evolution were characterized by a higher median number of co-mutations, and a co-mutational pattern of high-risk lesions, such as truncating mutations of ASXL1, bi-allelic TP53 loss, and CSMD1 mutations. Nevertheless, no difference was found between cases with and without additional somatic mutations regarding fibrotic progression, SVT recurrence, other thrombo-hemorrhagic complications, or death. After a median follow-up of 7.1 years, ten deaths were recorded; fibrotic progression/leukemic evolution was ascertained in one (1.7%) and six (10.3%) patients, respectively, while 22 (37.9%) patients suffered from recurrent thrombosis. In conclusion, our data underline the importance of using NGS analysis in the management of MPN-related SVT as it can support the MPN diagnosis, particularly in "triple-negative" cases, and provide additional information with potential consequences on prognosis and therapeutic strategies.


Asunto(s)
Trastornos Mieloproliferativos , Neoplasias , Trombosis de la Vena , Humanos , Trastornos Mieloproliferativos/genética , Trombosis de la Vena/genética , Mutación , Genómica , Janus Quinasa 2/genética , Calreticulina/genética
4.
Drug Deliv Transl Res ; 13(7): 1896-1911, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36472784

RESUMEN

Tumor-associated macrophages (TAMs), a class of immune cells that play a key role in tumor immunosuppression, are recognized as important targets to improve cancer prognosis and treatment. Consequently, the engineering of drug delivery nanocarriers that can reach TAMs has acquired special relevance. This work describes the development and biological evaluation of a panel of hyaluronic acid (HA) nanocapsules (NCs), with different compositions and prepared by different techniques, designed to target macrophages. The results showed that plain HA NCs did not significantly influence the polarization of M0 and M2-like macrophages towards an M1-like pro-inflammatory phenotype; however, the chemical functionalization of HA with mannose (HA-Man) led to a significant increase of NCs uptake by M2 macrophages in vitro and to an improved biodistribution in a MN/MNCA1 fibrosarcoma mouse model with high infiltration of TAMs. These functionalized HA-Man NCs showed a higher accumulation in the tumor compared to non-modified HA NCs. Finally, the pre-administration of the liposomal liver occupying agent Nanoprimer™ further increased the accumulation of the HA-Man NCs in the tumor. This work highlights the promise shown by the HA-Man NCs to target TAMs and thus provides new options for the development of nanomedicine and immunotherapy-based cancer treatments.


Asunto(s)
Nanocápsulas , Neoplasias , Ratones , Animales , Nanocápsulas/química , Ácido Hialurónico/química , Manosa , Macrófagos Asociados a Tumores/patología , Distribución Tisular , Neoplasias/patología
5.
Methods Mol Biol ; 2614: 81-91, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36587120

RESUMEN

Tumor-associated macrophages (TAMs) play a key immunosuppressive role that limits the ability of the immune system to fight cancer and hinder the anti-tumoral efficacy of most treatments currently applied in the clinic. However, a key feature of macrophages is their phenotypical and functional plasticity, which called their attention as promising targets for therapeutic intervention based on their elimination or reprogramming toward M1-like cytotoxic effector cells, with anti-tumor functions. This polarization status of macrophages can be studied in terms of molecular markers and functional activities, using an appropriate combination of experimental methodologies, both in vitro and in vivo. Here we focus on describing in vitro protocols to isolate primary monocytes from buffy coats and to study macrophage phenotype and function, after exposure to new therapies, by a combination of flow cytometry, RT-PCR, and ELISA analysis. We also provide the methodology to evaluate in vitro the cytotoxic activity of treated macrophages toward cancer cells.


Asunto(s)
Neoplasias , Humanos , Monocitos , Macrófagos , Fenotipo , Biomarcadores , Microambiente Tumoral
6.
Front Immunol ; 14: 1334800, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38259462

RESUMEN

Background: In the tumor microenvironment (TME), tumor-associated macrophages (TAMs) play a key immunosuppressive role that limits the ability of the immune system to fight cancer. Toll-like receptors (TLRs) ligands, such as poly(I:C) or resiquimod (R848) are able to reprogram TAMs towards M1-like antitumor effector cells. The objective of our work has been to develop and evaluate polymeric nanocapsules (NCs) loaded with poly(I:C)+R848, to improve drug stability and systemic toxicity, and evaluate their targeting and therapeutic activity towards TAMs in the TME of solid tumors. Methods: NCs were developed by the solvent displacement and layer-by-layer methodologies and characterized by dynamic light scattering and nanoparticle tracking analysis. Hyaluronic acid (HA) was chemically functionalized with mannose for the coating of the NCs to target TAMs. NCs loaded with TLR ligands were evaluated in vitro for toxicity and immunostimulatory activity by Alamar Blue, ELISA and flow cytometry, using primary human monocyte-derived macrophages. For in vivo experiments, the CMT167 lung cancer model and the MN/MCA1 fibrosarcoma model metastasizing to lungs were used; tumor-infiltrating leukocytes were evaluated by flow cytometry and multispectral immunophenotyping. Results: We have developed polymeric NCs loaded with poly(I:C)+R848. Among a series of 5 lead prototypes, protamine-NCs were selected based on their physicochemical properties (size, charge, stability) and in vitro characterization, showing good biocompatibility on primary macrophages and ability to stimulate their production of T-cell attracting chemokines (CXCL10, CCL5) and to induce M1-like macrophages cytotoxicity towards tumor cells. In mouse tumor models, the intratumoral injection of poly(I:C)+R848-protamine-NCs significantly prevented tumor growth and lung metastasis. In an orthotopic murine lung cancer model, the intravenous administration of poly(I:C)+R848-prot-NCs, coated with an additional layer of HA-mannose to improve TAM-targeting, resulted in good antitumoral efficacy with no apparent systemic toxicity. While no significant alterations were observed in T cell numbers (CD8, CD4 or Treg), TAM-reprogramming in treated mice was confirmed by the relative decrease of interstitial versus alveolar macrophages, having higher CD86 expression but lower CD206 and Arg1 expression in the same cells, in treated mice. Conclusion: Mannose-HA-protamine-NCs loaded with poly(I:C)+R848 successfully reprogram TAMs in vivo, and reduce tumor progression and metastasis spread in mouse tumors.


Asunto(s)
Imidazoles , Neoplasias Pulmonares , Nanocápsulas , Humanos , Animales , Ratones , Macrófagos Asociados a Tumores , Manosa , Neoplasias Pulmonares/tratamiento farmacológico , Modelos Animales de Enfermedad , Protaminas , Microambiente Tumoral
7.
Int J Mol Sci ; 23(24)2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36555330

RESUMEN

Multiple myeloma (MM) has a highly heterogeneous genetic background, which complicates its molecular tracking over time. Nevertheless, each MM patient's malignant plasma cells (PCs) share unique V(D)J rearranged sequences at immunoglobulin loci, which represent ideal disease biomarkers. Because the tumor-specific V(D)J sequence is highly expressed in bulk RNA in MM patients, we wondered whether it can be identified by single-cell RNA sequencing (scRNA-seq). To this end we analyzed CD138+ cells purified from bone marrow aspirates of 19 samples with PC dyscrasias by both a standard method based on bulk DNA and by an implementation of the standard 10x Genomics protocol to detect expressed V(D)J sequences. A dominant clonotype was easily identified in each sample, accounting on average for 83.65% of V(D)J-rearranged cells. Compared with standard methods, scRNA-seq analysis proved highly concordant and even more effective in identifying clonal productive rearrangements, by-passing limitations related to the misannealing of consensus primers in hypermutated regions. We next validated its accuracy to track 5 clonal cells with absolute sensitivity in a virtual sample containing 3180 polyclonal cells. This shows that single-cell V(D)J analysis may be used to find rare clonal cells, laying the foundations for functional single-cell dissection of minimal residual disease.


Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/patología , Cadenas Pesadas de Inmunoglobulina/genética , Recombinación V(D)J , Reordenamiento Génico , Análisis de Secuencia de ARN
9.
J Immunother Cancer ; 9(9)2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34531246

RESUMEN

BACKGROUND: Tumor-associated macrophages (TAMs) play a key immunosuppressive role that limits the ability of the immune system to fight cancer and hinder the antitumoral efficacy of most treatments currently applied in the clinic. Previous studies have evaluated the antitumoral immune response triggered by (TLR) agonists, such as poly(I:C), imiquimod (R837) or resiquimod (R848) as monotherapies; however, their combination for the treatment of cancer has not been explored. This study investigates the antitumoral efficacy and the macrophage reprogramming triggered by poly(I:C) combined with R848 or with R837, versus single treatments. METHODS: TLR agonist treatments were evaluated in vitro for toxicity and immunostimulatory activity by Alamar Blue, ELISA and flow cytometry using primary human and murine M-CSF-differentiated macrophages. Cytotoxic activity of TLR-treated macrophages toward cancer cells was evaluated with an in vitro functional assay by flow cytometry. For in vivo experiments, the CMT167 lung cancer model and the MN/MCA1 fibrosarcoma model metastasizing to lungs were used; tumor-infiltrating leukocytes were evaluated by flow cytometry, RT-qPCR, multispectral immunophenotyping, quantitative proteomic experiments, and protein-protein interaction analysis. RESULTS: Results demonstrated the higher efficacy of poly(I:C) combined with R848 versus single treatments or combined with R837 to polarize macrophages toward M1-like antitumor effectors in vitro. In vivo, the intratumoral synergistic combination of poly(I:C)+R848 significantly prevented tumor growth and metastasis in lung cancer and fibrosarcoma immunocompetent murine models. Regressing tumors showed increased infiltration of macrophages with a higher M1:M2 ratio, recruitment of CD4+ and CD8+ T cells, accompanied by a reduction of immunosuppressive CD206+ TAMs and FOXP3+/CD4+ T cells. The depletion of both CD4+ and CD8+ T cells resulted in complete loss of treatment efficacy. Treated mice acquired systemic antitumoral response and resistance to tumor rechallenge mediated by boosted macrophage cytotoxic activity and T-cell proliferation. Proteomic experiments validate the superior activation of innate immunity by poly(I:C)+R848 combination versus single treatments or poly(I:C)+R837, and protein-protein-interaction network analysis reveal the key activation of the STAT1 pathway. DISCUSSION: These findings demonstrate the antitumor immune responses mediated by macrophage activation on local administration of poly(I:C)+R848 combination and support the intratumoral application of this therapy to patients with solid tumors in the clinic.


Asunto(s)
Antivirales/uso terapéutico , Terapia Combinada/métodos , Imidazoles/uso terapéutico , Inmunoterapia/métodos , Neoplasias/tratamiento farmacológico , Poli I-C/uso terapéutico , Macrófagos Asociados a Tumores/metabolismo , Animales , Antivirales/farmacología , Línea Celular Tumoral , Sinergismo Farmacológico , Humanos , Imidazoles/farmacología , Ratones , Poli I-C/farmacología
10.
Clin Cancer Res ; 27(23): 6479-6490, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34526359

RESUMEN

PURPOSE: Multiple myeloma is a biologically heterogenous plasma-cell disorder. In this study, we aimed at dissecting the functional impact on transcriptome of gene mutations, copy-number abnormalities (CNA), and chromosomal rearrangements (CR). Moreover, we applied a geno-transcriptomic approach to identify specific biomarkers for personalized treatments. EXPERIMENTAL DESIGN: We analyzed 514 newly diagnosed patients from the IA12 release of the CoMMpass study, accounting for mutations in multiple myeloma driver genes, structural variants, copy-number segments, and raw-transcript counts. We performed an in silico drug sensitivity screen (DSS), interrogating the Cancer Dependency Map (DepMap) dataset after anchoring cell lines to primary tumor samples using the Celligner algorithm. RESULTS: Immunoglobulin translocations, hyperdiploidy and chr(1q)gain/amps were associated with the highest number of deregulated genes. Other CNAs and specific gene mutations had a lower but very distinct impact affecting specific pathways. Many recurrent genes showed a hotspot (HS)-specific effect. The clinical relevance of double-hit multiple myeloma found strong biological bases in our analysis. Biallelic deletions of tumor suppressors and chr(1q)-amplifications showed the greatest impact on gene expression, deregulating pathways related to cell cycle, proliferation, and expression of immunotherapy targets. Moreover, our in silico DSS showed that not only t(11;14) but also chr(1q)gain/amps and CYLD inactivation predicted differential expression of transcripts of the BCL2 axis and response to venetoclax. CONCLUSIONS: The multiple myeloma genomic architecture and transcriptome have a strict connection, led by CNAs and CRs. Gene mutations impacted especially with HS-mutations of oncogenes and biallelic tumor suppressor gene inactivation. Finally, a comprehensive geno-transcriptomic analysis allows the identification of specific deregulated pathways and candidate biomarkers for personalized treatments in multiple myeloma.


Asunto(s)
Mieloma Múltiple , Perfilación de la Expresión Génica , Genómica , Humanos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Oncogenes , Transcriptoma
11.
Hemasphere ; 4(6): e502, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33283171

RESUMEN

The knowledge of cancer origin and the subsequent tracking of disease evolution represent unmet needs that will soon be within clinical reach. This will provide the opportunity to improve patient's stratification and to personalize treatments based on cancer biology along its life history. In this review, we focus on the molecular pathogenesis of multiple myeloma (MM), a hematologic malignancy with a well-known multi-stage disease course, where such approach can sooner translate into a clinical benefit. We describe novel insights into modes and timing of disease initiation. We dissect the biology of the preclinical and pre-malignant phases, elucidating how knowledge of the genomics of the disease and the composition of the microenvironment allow stratification of patients based on risk of disease progression. Then, we explore cell-intrinsic and cell-extrinsic drivers of MM evolution to symptomatic disease. Finally, we discuss how this may relate to the development of refractory disease after treatment. By integrating an evolutionary view of myeloma biology with the recent acquisitions on its clonal heterogeneity, we envision a way to drive the clinical management of the disease based on its detailed biological features more than surrogates of disease burden.

12.
Materials (Basel) ; 13(10)2020 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-32443467

RESUMEN

Preparation of high-performance organic semiconductor devices requires precise control over the active-layer structure. To this end, we are working on the controlled deposition of small-molecule semiconductors through a photoprecursor approach wherein a soluble precursor compound is processed into a thin-film form and then converted to a target semiconductor by light irradiation. This approach can be applied to layer-by-layer solution deposition, enabling the preparation of p-i-n-type photovoltaic active layers by wet processing. However, molecular design principles are yet to be established toward obtaining desirable thin-film morphology via this unconventional method. Herein, we evaluate a new windmill-shaped molecule with anthryl blades, 1,3,5-tris(5-(anthracen-2-yl)thiophen-2-yl)benzene, which is designed to deposit via the photoprecursor approach for use as the p-sublayer in p-i-n-type organic photovoltaic devices (OPVs). The new compound is superior to the corresponding precedent p-sublayer materials in terms of forming smooth and homogeneous films, thereby leading to improved performance of p-i-n OPVs. Overall, this work demonstrates the effectiveness of the windmill-type architecture in preparing high-quality semiconducting thin films through the photoprecursor approach.

13.
J Biomed Nanotechnol ; 16(2): 212-223, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32252882

RESUMEN

Together with the development of new therapeutic agents, innovation in the delivery system of anti-tumor drugs is required to increase tumor-specificity and avoid unexpected toxicity. To achieve higher efficiency, we combined a live cell-mediated drug delivery system with nanotechnology, with the aim to prove that blood monocytes can be a cargo to deliver antitumor drugs encapsulated in Polymeric poly(D, L-lactide-co-glycolide) acid based nanoparticles (PLGA NPs). In this study, we have characterized how isolated purified monocytes efficiently internalize PLGA-NPs and have imaged in vivo their trafficking upon intravenous injection in tumor-bearing mice. Monocytes carrying PLGA-Cy7 NPs were able to reach the tumor site, with superior efficiency than free PLGA-Cy7 NPs, and the bio-distribution analysis confirmed that tumors were the most reached among peripheral tissues. We further demonstrate that monocytes carrying Doxorubicin encapsulated PLGA NPs (PLGA-Doxo) induced strong killing of co-cultured tumor cells. Our studies provide proof-of-concept evidence that monocytes can be exploited in approaches of live cell-mediated drug delivery systems for tumor therapy.


Asunto(s)
Nanopartículas , Animales , Antineoplásicos , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Ratones , Monocitos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico
14.
Eur J Immunol ; 49(5): 801-811, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30779113

RESUMEN

Macrophage plasticity is the ability of mononuclear phagocytes to change phenotype, function, and genetic reprogramming upon encounter of specific local stimuli. In the tumor microenvironment, Tumor-Associated Macrophages (TAMs) acquire an immune-suppressive and tumor-promoting phenotype. With the aim to re-educate TAMs to antitumor effectors, in this study, we used two immunestimulatory compounds: the TLR7 agonist Imiquimod (IMQ) and the TLR3 agonist Poly(I:C). To better mimic in vitro the response of TAMs, we used Tumor-Conditioned Macrophages (TC-Mϕ) differentiated in the presence of tumor cell supernatants. Our results show that TC-Mϕ respond differently from conventional M2-polarized macrophages. Upon stimulation with IMQ, TC-Mϕ did not upregulate major histocompatibility complex (MHC II) molecules and unexpectedly expressed increased CD206. With both compounds, TC-Mϕ produced higher levels of inflammatory cytokines than M2 macrophages. IMQ and Poly(I:C) differed in the types of regulated genes and secreted mediators. Reflecting their signaling pathways, only IMQ significantly induced IL-1ß and IL-6, while only Poly(I:C) stimulated CXCL10, and both upregulated CCL5. Of note, using a novel cytotoxicity assay, Poly(I:C), but not IMQ, was effective in triggering the cytotoxic activity of TC-Mϕ against cancer cells. Overall, the results demonstrate that Poly(I:C) stimulation of TC-Mϕ is superior than IMQ in terms of macrophage re-education toward antitumor effectors.


Asunto(s)
Antineoplásicos/farmacología , Imiquimod/farmacología , Macrófagos/inmunología , Neoplasias/inmunología , Poli I-C/farmacología , Línea Celular Tumoral , Membrana Celular/inmunología , Membrana Celular/metabolismo , Citocinas/metabolismo , Humanos , Imiquimod/inmunología , Inmunomodulación , Macrófagos/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/terapia , Poli I-C/inmunología , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
15.
Clin Cancer Res ; 25(3): 1098-1112, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30352904

RESUMEN

PURPOSE: Tumor-associated macrophages (TAMs) and the hyperactivation of the PI3K/AKT pathway are involved in the pathogenesis of Hodgkin lymphoma and affect disease outcome. Because the δ and γ isoforms of PI3K are overexpressed in Hodgkin/Reed-Sternberg (HRS) cells and the tumor microenvironment (TME), we propose that the PI3Kδ/γ inhibitor RP6530 might affect both HRS cells and TME, ultimately leading to an enhanced antitumor response. EXPERIMENTAL DESIGN: Hodgkin lymphoma cell lines (L-540, KM-H2, and L-428) and primary human macrophages were used to investigate the activity of RP6530 in vitro and in vivo in Hodgkin lymphoma cell line xenografts. RESULTS: In vitro, RP6530 besides killing and inhibiting the proliferation of Hodgkin lymphoma cells, downregulated lactic acid metabolism, switching the activation of macrophages from an immunosuppressive M2-like phenotype to a more inflammatory M1-like state. By RNA sequencing, we define tumor glycolysis as a specific PI3Kδ/γ-dependent pathway implicated in the metabolic reprogramming of cancer cells. We identify the metabolic regulator pyruvate kinase M2 as the main mediator of tumor-induced immunosuppressive phenotype of macrophages. Furthermore, we show in human tumor xenografts that RP6530 repolarizes TAMs into proinflammatory macrophages and inhibits tumor vasculature, leading to tumor regression. Interestingly, patients with Hodgkin lymphoma experiencing objective responses (complete response and partial response) in a phase I trial using RP6530 showed a significant inhibition of circulating myeloid-derived suppressor cells and an average mean reduction in serum thymus and activation-regulated chemokine levels of 40% (range, 4%-76%). CONCLUSIONS: Our results support PI3Kδ/γ inhibition as a novel therapeutic strategy that targets both malignant cells and the TME to treat patients with Hodgkin lymphoma.


Asunto(s)
Benzopiranos/farmacología , Proliferación Celular/efectos de los fármacos , Enfermedad de Hodgkin/prevención & control , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3/uso terapéutico , Purinas/farmacología , Microambiente Tumoral/efectos de los fármacos , Animales , Línea Celular Tumoral , Células Cultivadas , Glucólisis/efectos de los fármacos , Enfermedad de Hodgkin/metabolismo , Enfermedad de Hodgkin/patología , Humanos , Ácido Láctico/metabolismo , Activación de Macrófagos/efectos de los fármacos , Macrófagos/clasificación , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Fosfatidilinositol 3-Quinasas/genética , Células de Reed-Sternberg/efectos de los fármacos , Células de Reed-Sternberg/enzimología , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
16.
Adv Mater ; 30(31): e1801968, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29920799

RESUMEN

Thin-film photovoltaics (PV) have emerged as a technology that can meet the growing demands for efficient and low-cost large-scale cells. However, the photoabsorbers currently in use contain expensive or toxic elements, and the difficulty in bipolar doping, particularly in a device structure, requires elaborate optimization of the heterostructures for improving the efficiency. This study shows that bipolar doping with high hole and electron mobilities in copper nitride (Cu3 N), composed solely of earth-abundant and environmentally benign elements, is readily available through a novel gaseous direct nitriding reaction applicable to uniform and large-area deposition. A high-quality undoped Cu3 N film is essentially an n-type semiconductor, while p-type conductivity is realized by interstitial fluorine doping, as predicted using density functional theory calculations and directly proven by atomically resolved imaging. The synthetic methodology for high-quality p-type and n-type films paves the way for the application of Cu3 N as an alternative absorber in thin-film PV.

17.
Semin Immunol ; 34: 103-113, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28941641

RESUMEN

The engineering of new nanomedicines with ability to target and kill or re-educate Tumor Associated Macrophages (TAMs) stands up as a promising strategy to induce the effective switching of the tumor-promoting immune suppressive microenvironment, characteristic of tumors rich in macrophages, to one that kills tumor cells, is anti-angiogenic and promotes adaptive immune responses. Alternatively, the loading of monocytes/macrophages in blood circulation with nanomedicines, may be used to profit from the high infiltration ability of myeloid cells and to allow the drug release in the bulk of the tumor. In addition, the development of TAM-targeted imaging nanostructures, can be used to study the macrophage content in solid tumors and, hence, for a better diagnosis and prognosis of cancer disease. The major challenges for the effective targeting of TAM with nanomedicines and their application in the clinic have already been identified. These challenges are associated to the undesirable clearance of nanomedicines by, the mononuclear phagocyte system (macrophages) in competing organs (liver, lung or spleen), upon their intravenous injection; and also to the difficult penetration of nanomedicines across solid tumors due to the abnormal vasculature and the excessive extracellular matrix present in stromal tumors. In this review we describe the recent nanotechnology-base strategies that have been developed to target macrophages in tumors.


Asunto(s)
Inmunoterapia/métodos , Macrófagos/inmunología , Sistema Mononuclear Fagocítico , Nanopartículas/uso terapéutico , Nanoestructuras/estadística & datos numéricos , Neoplasias/inmunología , Animales , Citotoxicidad Inmunológica , Sistemas de Liberación de Medicamentos , Humanos , Nanomedicina , Microambiente Tumoral
18.
Anal Chem ; 89(12): 6408-6414, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28510445

RESUMEN

Direct-injection electron ionization-mass spectrometry (DI-EI-MS) is a multivariate analysis method useful for characterizing biological materials. We demonstrated the use of DI-EI-MS for metabolic profiling using several closely related lichen species: Cladonia krempelhuberi, C. gracilis, C. pseudogymnopoda, and C. ramulosa. The methodology involves conversion of total ion chromatograms to integrated chromatograms and assessment of reproducibility. The qualitative DI-EI-MS method was used to profile the major and/or minor constituents in extracts of lichen samples. It was possible to distinguish each lichen sample by altering the electron energy in DI-EI-MS and examining the resulting data using one-way analysis of variance. Previously undetectable peaks, which are easy to fragment could be revealed by varying the electron energy. Our results suggest that metabolic profiling using DI-EI-MS would be useful for discriminating between subgroups within the same species. This is the first study to report the use of DI-EI-MS in a metabolomics application.


Asunto(s)
Líquenes/metabolismo , Metabolómica , Líquenes/química , Espectrometría de Masas , Análisis Multivariante
19.
Sci Signal ; 8(395): ra95, 2015 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-26396268

RESUMEN

Among the distinct molecular signatures present in the mitochondrion is the tetra-acylated anionic phospholipid cardiolipin, a lipid also present in primordial, single-cell bacterial ancestors of mitochondria and multiple bacterial species today. Cardiolipin is normally localized to the inner mitochondrial membrane; however, when cardiolipin becomes externalized to the surface of dysregulated mitochondria, it promotes inflammasome activation and stimulates the elimination of damaged or nonfunctional mitochondria by mitophagy. Given the immunogenicity of mitochondrial and bacterial membranes that are released during sterile and pathogen-induced trauma, we hypothesized that cardiolipins might function as "eat me" signals for professional phagocytes. In experiments with macrophage cell lines and primary macrophages, we found that membranes with mitochondrial or bacterial cardiolipins on their surface were engulfed through phagocytosis, which depended on the scavenger receptor CD36. Distinct from this process, the copresentation of cardiolipin with the Toll-like receptor 4 (TLR4) agonist lipopolysaccharide dampened TLR4-stimulated production of cytokines. These data suggest that externalized, extracellular cardiolipins play a dual role in host-host and host-pathogen interactions by promoting phagocytosis and attenuating inflammatory immune responses.


Asunto(s)
Antígenos CD36/inmunología , Cardiolipinas/inmunología , Macrófagos/inmunología , Fagocitosis , Transducción de Señal/inmunología , Receptor Toll-Like 4/inmunología , Línea Celular Tumoral , Humanos
20.
Anal Sci ; 30(10): 1013-7, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25312633

RESUMEN

A sensitive, simple and low-cost determination method for the total iron concentration in boiler water systems of power generation plants was developed by solid phase spectrometry (SPS) using 2,4,6-tris(2-pyridyl)-1,3,5-triazine (TPTZ) as a coloring agent. The reagents and 0.08 cm(3) of a cation exchanger were added to a 50-cm(3) boiler water sample, then mixed for 30 min to adsorb/concentrate the produced Fe(TPTZ)2(2+) colored complex on the solid beads, resulting in a 625 times concentration of the target analyte without any other procedure. The detection limit of 0.1 µg dm(-3) was obtained, and the optimum conditions for the digestion procedure and color developing reaction was investigated and reported. According to the application of this method to real samples, the present SPS method is the best one because of the shorter analysis time, simpler operation and use of very low-cost equipment compared to the conventional methods, such as TPTZ solution spectrophotometric method after a 16 times concentration, ICP-MS and AAS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...