Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Front Endocrinol (Lausanne) ; 14: 1247542, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37964967

RESUMEN

Background: CDK4/6 inhibitors (CDK4/6i) have been established as standard treatment against advanced Estrogen Receptor-positive breast cancers. These drugs are being tested against several cancers, including in combinations with other therapies. We identified the T172-phosphorylation of CDK4 as the step determining its activity, retinoblastoma protein (RB) inactivation, cell cycle commitment and sensitivity to CDK4/6i. Poorly differentiated (PDTC) and anaplastic (ATC) thyroid carcinomas, the latter considered one of the most lethal human malignancies, represent major clinical challenges. Several molecular evidence suggest that CDK4/6i could be considered for treating these advanced thyroid cancers. Methods: We analyzed by two-dimensional gel electrophoresis the CDK4 modification profile and the presence of T172-phosphorylated CDK4 in a collection of 98 fresh-frozen tissues and in 21 cell lines. A sub-cohort of samples was characterized by RNA sequencing and immunohistochemistry. Sensitivity to CDK4/6i (palbociclib and abemaciclib) was assessed by BrdU incorporation/viability assays. Treatment of cell lines with CDK4/6i and combination with BRAF/MEK inhibitors (dabrafenib/trametinib) was comprehensively evaluated by western blot, characterization of immunoprecipitated CDK4 and CDK2 complexes and clonogenic assays. Results: CDK4 phosphorylation was detected in all well-differentiated thyroid carcinomas (n=29), 19/20 PDTC, 16/23 ATC and 18/21 thyroid cancer cell lines, including 11 ATC-derived ones. Tumors and cell lines without phosphorylated CDK4 presented very high p16CDKN2A levels, which were associated with proliferative activity. Absence of CDK4 phosphorylation in cell lines was associated with CDK4/6i insensitivity. RB1 defects (the primary cause of intrinsic CDK4/6i resistance) were not found in 5/7 tumors without detectable phosphorylated CDK4. A previously developed 11-gene expression signature identified the likely unresponsive tumors, lacking CDK4 phosphorylation. In cell lines, palbociclib synergized with dabrafenib/trametinib by completely and permanently arresting proliferation. These combinations prevented resistance mechanisms induced by palbociclib, most notably Cyclin E1-CDK2 activation and a paradoxical stabilization of phosphorylated CDK4 complexes. Conclusion: Our study supports further clinical evaluation of CDK4/6i and their combination with anti-BRAF/MEK therapies as a novel effective treatment against advanced thyroid tumors. Moreover, the complementary use of our 11 genes predictor with p16/KI67 evaluation could represent a prompt tool for recognizing the intrinsically CDK4/6i insensitive patients, who are potentially better candidates to immediate chemotherapy.


Asunto(s)
Imidazoles , Oximas , Prolina/análogos & derivados , Tiocarbamatos , Carcinoma Anaplásico de Tiroides , Neoplasias de la Tiroides , Humanos , Fosforilación , Proteínas Proto-Oncogénicas B-raf/genética , Línea Celular Tumoral , Neoplasias de la Tiroides/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Carcinoma Anaplásico de Tiroides/tratamiento farmacológico , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Quinasa 4 Dependiente de la Ciclina
2.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37445942

RESUMEN

Thyroid cancer is the most common endocrine malignant tumor with an increasing incidence rate. Although differentiated types of thyroid cancer generally present good clinical outcomes, some dedifferentiate into aggressive and lethal forms. However, the molecular mechanisms governing aggressiveness and dedifferentiation are still poorly understood. Aberrant expression of miRNAs is often correlated to tumor development, and miR-204-5p has previously been identified in papillary thyroid carcinoma as downregulated and associated with aggressiveness. This study aimed to explore its role in thyroid tumorigenesis. To address this, gain-of-function experiments were performed by transiently transfecting miR-204-5p in thyroid cancer cell lines. Then, the clinical relevance of our data was evaluated in vivo. We prove that this miRNA inhibits cell invasion by regulating several targets associated with an epithelial-mesenchymal transition, such as SNAI2, TGFBR2, SOX4 and HMGA2. HMGA2 expression is regulated by the MAPK pathway but not by the PI3K, IGF1R or TGFß pathways, and the inhibition of cell invasion by miR-204-5p involves direct binding and repression of HMGA2. Finally, we confirmed in vivo the relationship between miR-204-5p and HMGA2 in human PTC and a corresponding mouse model. Our data suggest that HMGA2 inhibition offers promising perspectives for thyroid cancer treatment.


Asunto(s)
MicroARNs , Neoplasias de la Tiroides , Ratones , Animales , Humanos , Cáncer Papilar Tiroideo/genética , Cáncer Papilar Tiroideo/patología , Línea Celular Tumoral , MicroARNs/metabolismo , Neoplasias de la Tiroides/patología , Transformación Celular Neoplásica/genética , Proliferación Celular/genética , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Factores de Transcripción SOXC/genética
3.
Cancers (Basel) ; 14(2)2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-35053446

RESUMEN

Though heterogeneity of cancers is recognized and has been much discussed in recent years, the concept often remains overlooked in different routine examinations. Indeed, in clinical or biological articles, reviews, and textbooks, cancers and cancer cells are generally presented as evolving distinct entities rather than as an independent heterogeneous cooperative cell population with its self-oriented biology. There are, therefore, conceptual gaps which can mislead the interpretations/diagnostic and therapeutic approaches. In this short review, we wish to summarize and discuss various aspects of this dynamic evolving heterogeneity and its biological, pathological, clinical, diagnostic, and therapeutic implications, using thyroid carcinoma as an illustrative example.

4.
Mol Cell Endocrinol ; 541: 111491, 2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-34740746

RESUMEN

The vast majority of thyroid cancers originate from follicular cells. We outline outstanding issues at each step along the path of cancer patient care, from prevention to post-treatment follow-up and highlight how emerging technologies will help address them in the coming years. Three directions will dominate the coming technological landscape. Genomics will reveal tumoral evolutionary history and shed light on how these cancers arise from the normal epithelium and the genomics alteration driving their progression. Transcriptomics will gain cellular and spatial resolution providing a full account of intra-tumor heterogeneity and opening a window on the microenvironment supporting thyroid tumor growth. Artificial intelligence will set morphological analysis on an objective quantitative ground laying the foundations of a systematic thyroid tumor classification system. It will also integrate into unified representations the molecular and morphological perspectives on thyroid cancer.


Asunto(s)
Invenciones/tendencias , Oncología Médica/tendencias , Neoplasias de la Tiroides , Investigación Biomédica/métodos , Investigación Biomédica/tendencias , Continuidad de la Atención al Paciente/tendencias , Atención a la Salud/métodos , Atención a la Salud/tendencias , Endocrinología/tendencias , Genómica/métodos , Genómica/tendencias , Humanos , Oncología Médica/métodos , Neoplasias de la Tiroides/diagnóstico , Neoplasias de la Tiroides/terapia
5.
Oncotarget ; 12(16): 1587-1599, 2021 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34381564

RESUMEN

The aberrant expression of miRNAs is often correlated to tumor development. MiR-7-5p is a recently discovered downregulated miRNA in thyroid papillary carcinoma (PTC). The goal of this project was to characterize its functional role in thyroid tumorigenesis and to identify the targeted modulated pathways. MiR-7-5p overexpression following transfection in TPC1 and HT-ori3 cells decreased proliferation of the two thyroid cell lines. Analysis of global transcriptome modifications showed that miR-7-5p inhibits thyroid cell proliferation by modulating the MAPK and PI3K signaling pathways which are both necessary for normal thyroid proliferation and play central roles in PTC tumorigenesis. Several effectors of these pathways are indeed targets of miR-7-5p, among which EGFR and IRS2, two upstream activators. We confirmed the upregulation of IRS2 and EGFR in human PTC and showed the existence of a negative correlation between the decreased expression of miR-7-5p and the increased expression of IRS2 or EGFR. Our results thus support a tumor-suppressor activity of miR-7-5p. The decreased expression of miR-7-5p during PTC tumorigenesis might give the cells a proliferative advantage and delivery of miR-7-5p may represent an innovative approach for therapy.

6.
Front Cell Dev Biol ; 9: 669354, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34249923

RESUMEN

The human thyroid gland acquires a differentiation program as early as weeks 3-4 of embryonic development. The onset of functional differentiation, which manifests by the appearance of colloid in thyroid follicles, takes place during gestation weeks 10-11. By 12-13 weeks functional differentiation is accomplished and the thyroid is capable of producing thyroid hormones although at a low level. During maturation, thyroid hormones yield increases and physiological mechanisms of thyroid hormone synthesis regulation are established. In the present work we traced the process of thyroid functional differentiation and maturation in the course of human development by performing transcriptomic analysis of human thyroids covering the period of gestation weeks 7-11 and comparing it to adult human thyroid. We obtained specific transcriptomic signatures of embryonic and adult human thyroids by comparing them to non-thyroid tissues from human embryos and adults. We defined a non-TSH (thyroid stimulating hormone) dependent transition from differentiation to maturation of thyroid. The study also sought to shed light on possible factors that could replace TSH, which is absent in this window of gestational age, to trigger transition to the emergence of thyroid function. We propose a list of possible genes that may also be involved in abnormalities in thyroid differentiation and/or maturation, hence leading to congenital hypothyroidism. To our knowledge, this study represent the first transcriptomic analysis of human embryonic thyroid and its comparison to adult thyroid.

8.
Thyroid ; 30(1): 133-146, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31650902

RESUMEN

Background: The production of thyroid hormones [triiodothyronine (T3), thyroxine (T4)] depends on the organization of the thyroid in follicles, which are lined by a monolayer of thyrocytes with strict apicobasal polarity. This polarization supports vectorial transport of thyroglobulin (Tg) for storage into, and recapture from, the colloid. It also allows selective addressing of channels, transporters, ion pumps, and enzymes to their appropriate basolateral [Na+/I- symporter (NIS), SLC26A7, and Na+/K+-ATPase] or apical membrane domain (anoctamin, SLC26A4, DUOX2, DUOXA2, and thyroperoxidase). How these actors of T3/T4 synthesis reach their final destination remains poorly understood. The PI 3-kinase isoform Vps34/PIK3C3 is now recognized as a main component in the general control of vesicular trafficking and of cell homeostasis through the regulation of endosomal trafficking and autophagy. We recently reported that conditional Vps34 inactivation in proximal tubular cells in the kidney prevents normal addressing of apical membrane proteins and causes abortive macroautophagy. Methods:Vps34 was inactivated using a Pax8-driven Cre recombinase system. The impact of Vps34 inactivation in thyrocytes was analyzed by histological, immunolocalization, and messenger RNA expression profiling. Thyroid hormone synthesis was assayed by 125I injection and plasma analysis. Results:Vps34 conditional knockout (Vps34cKO) mice were born at the expected Mendelian ratio and showed normal growth until postnatal day 14 (P14), then stopped growing and died at ∼1 month of age. We therefore analyzed thyroid Vps34cKO at P14. We found that loss of Vps34 in thyrocytes causes (i) disorganization of thyroid parenchyma, with abnormal thyrocyte and follicular shape and reduced PAS+ colloidal spaces; (ii) severe noncompensated hypothyroidism with extremely low T4 levels (0.75 ± 0.62 µg/dL) and huge thyrotropin plasma levels (19,300 ± 10,500 mU/L); (iii) impaired 125I organification at comparable uptake and frequent occurrence of follicles with luminal Tg but nondetectable T4-bearing Tg; (iv) intense signal in thyrocytes for the lysosomal membrane marker, LAMP-1, as well as Tg and the autophagy marker, p62, indicating defective lysosomal proteolysis; and (v) presence of macrophages in the colloidal space. Conclusions: We conclude that Vps34 is crucial for thyroid hormonogenesis, at least by controlling epithelial organization, Tg iodination as well as proteolytic T3/T4 excision in lysosomes.


Asunto(s)
Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Lisosomas/metabolismo , Tiroglobulina/metabolismo , Glándula Tiroides/metabolismo , Hormonas Tiroideas/metabolismo , Animales , Peróxido de Hidrógeno/metabolismo , Ratones , Proteolisis , Simportadores/metabolismo , Células Epiteliales Tiroideas/metabolismo
9.
J Clin Endocrinol Metab ; 105(3)2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31701151

RESUMEN

BACKGROUND: The early molecular events in human thyrocytes after 131I exposure have not yet been unravelled. Therefore, we investigated the role of TSH in the 131I-induced DNA damage response and gene expression in primary cultured human thyrocytes. METHODS: Following exposure of thyrocytes, in the presence or absence of TSH, to 131I (ß radiation), γ radiation (3 Gy), and hydrogen peroxide (H2O2), we assessed DNA damage, proliferation, and cell-cycle status. We conducted RNA sequencing to profile gene expression after each type of exposure and evaluated the influence of TSH on each transcriptomic response. RESULTS: Overall, the thyrocyte responses following exposure to ß or γ radiation and to H2O2 were similar. However, TSH increased 131I-induced DNA damage, an effect partially diminished after iodide uptake inhibition. Specifically, TSH increased the number of DNA double-strand breaks in nonexposed thyrocytes and thus predisposed them to greater damage following 131I exposure. This effect most likely occurred via Gα q cascade and a rise in intracellular reactive oxygen species (ROS) levels. ß and γ radiation prolonged thyroid cell-cycle arrest to a similar extent without sign of apoptosis. The gene expression profiles of thyrocytes exposed to ß/γ radiation or H2O2 were overlapping. Modulations in genes involved in inflammatory response, apoptosis, and proliferation were observed. TSH increased the number and intensity of modulation of differentially expressed genes after 131I exposure. CONCLUSIONS: TSH specifically increased 131I-induced DNA damage probably via a rise in ROS levels and produced a more prominent transcriptomic response after exposure to 131I.


Asunto(s)
Daño del ADN/fisiología , Rayos gamma/efectos adversos , Peróxido de Hidrógeno/efectos adversos , Radioisótopos de Yodo/efectos adversos , Tirotropina/metabolismo , Ciclo Celular/fisiología , Proliferación Celular/fisiología , Humanos , Cultivo Primario de Células , Células Epiteliales Tiroideas/metabolismo
10.
Thyroid ; 29(6): 845-857, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30990120

RESUMEN

Background: Energy metabolism is described to be deregulated in cancer, and the Warburg effect is considered to be a major hallmark. Recently, cellular heterogeneity in tumors and the tumor microenvironment has been recognized to play an important role in several metabolic pathways in cancer. However, its contribution to papillary thyroid cancer (PTC) development and metabolism is still poorly understood. Methods: A proteomic analysis of five PTC was performed, and the cellular distribution of several upregulated metabolic proteins was investigated in the cancerous and stromal cells of these tumors. Results: Tandem mass spectrometry analysis revealed the upregulation of many metabolism-related proteins, among them pyruvate carboxylase (PC). PC knockdown in thyroid cell lines alters their proliferative and motility capacities, and measurements of oxygen consumption rates show that this enzyme is involved in the replenishment of the tricarboxylic acid cycle. Immunostainings of several upregulated metabolic proteins show that thyroid cancer cells have an increased mitochondrial oxidative metabolism compared to stromal cells. Conclusions: PTC has a very active tricarboxylic acid cycle, continuously replenished by a PC-mediated anaplerosis. This is specifically observed in the tumor cells.


Asunto(s)
Metabolismo Energético/fisiología , Piruvato Carboxilasa/metabolismo , Cáncer Papilar Tiroideo/metabolismo , Neoplasias de la Tiroides/metabolismo , Línea Celular Tumoral , Proliferación Celular , Humanos , Consumo de Oxígeno/fisiología , Proteómica , Células del Estroma/metabolismo , Células del Estroma/patología , Espectrometría de Masas en Tándem , Cáncer Papilar Tiroideo/patología , Neoplasias de la Tiroides/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA