Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 6(20): 17762-9, 2014 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-25232699

RESUMEN

A bismuth vanadate photoanode was first fabricated by the metal-organic decomposition method and particles of calcium ferrite were electrophoretically deposited to construct a heterojunction photoanode. The characteristics of the photoanodes were investigated in photoelectrochemical water oxidation under simulated 1 sun (100 mW cm(-2)) irradiation. Relative to the pristine BiVO4 anode, the formation of the heterojunction structure of CaFe2O4/BiVO4 increased the photocurrent density by about 60%. The effect of heterojunction formation on the transfer of charge carriers was investigated using hydrogen peroxide as a hole scavenger. It was demonstrated that the heterojunction formation reduced the charge recombination on the electrode surface with little effect on bulk recombination. The modification with an oxygen evolving catalyst, cobalt phosphate (Co-Pi), was also beneficial for improving the efficiency of CaFe2O4/BiVO4 heterojunction photoanode mainly by increasing the stability.

2.
Angew Chem Int Ed Engl ; 53(23): 5852-7, 2014 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-24740478

RESUMEN

As a photocathode for CO2 reduction, zinc-blende zinc telluride (ZnTe) was directly formed on a Zn/ZnO nanowire substrate by a simple dissolution-recrystallization mechanism without any surfactant. With the most negative conduction-band edge among p-type semiconductors, this new photocatalyst showed efficient and stable CO formation in photoelectrochemical CO2 reduction at -0.2--0.7 V versus RHE without a sacrificial reagent.

3.
Sci Rep ; 3: 2681, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24045290

RESUMEN

A hematite photoanode showing a stable, record-breaking performance of 4.32 mA/cm² photoelectrochemical water oxidation current at 1.23 V vs. RHE under simulated 1-sun (100 mW/cm²) irradiation is reported. This photocurrent corresponds to ca. 34% of the maximum theoretical limit expected for hematite with a band gap of 2.1 V. The photoanode produced stoichiometric hydrogen and oxygen gases in amounts close to the expected values from the photocurrent. The hematitle has a unique single-crystalline "wormlike" morphology produced by in-situ two-step annealing at 550°C and 800°C of ß-FeOOH nanorods grown directly on a transparent conducting oxide glass via an all-solution method. In addition, it is modified by platinum doping to improve the charge transfer characteristics of hematite and an oxygen-evolving co-catalyst on the surface.

4.
J Am Chem Soc ; 135(14): 5375-83, 2013 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-23463951

RESUMEN

Tantalum oxynitride photoanode is fabricated and modified with calcium ferrite to form a heterojunction anode for a photoelectrochemical water splitting cell. The synthesized powders are loaded sequentially to the transparent conducting glass by electrophoretic deposition, which is advantageous to form a uniform layer and a junction structure. X-ray diffraction, UV-vis diffuse reflectance spectroscopy, scanning electron microscopy, and impedance spectroscopy analysis are conducted to investigate the structural, morphological, and electrochemical characteristics of the anode. The introduction of CaFe2O4 overlayer onto TaON electrode increases the photocurrent density about five times at 1.23 V vs reversible hydrogen electrode without any co-catalyst. Impedance spectroscopy analysis indicates that the junction formation increased photocurrent density by reducing the resistance to the transport of charge carriers and thereby enhancing the electron-hole separation. This photocurrent generation is a result of the overall water splitting as confirmed by evolution of hydrogen and oxygen in a stoichiometric ratio. From the study of different junction configurations, it is established that the intimate contact between TaON and CaFe2O4 is critical for enhanced performance of the heterojunction anode for photoelectrochemical water oxidation under simulated sun light.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...