Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Apoptosis ; 10(1): 153-66, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15711931

RESUMEN

Viral double-stranded RNA (dsRNA) is a ubiquitous intracellular "alert signal" used by cells to detect viral infection and to mount anti-viral responses. DsRNA triggers a rapid (complete within 2-4 h) apoptosis in the highly-susceptible HeLa cell line. Here, we demonstrate that the apical event in this apoptotic cascade is the activation of procaspase 8. Downstream of caspase 8, the apoptotic signaling cascade bifurcates into a mitochondria-independent caspase 8/caspase 3 arm and a mitochondria-dependent, caspase 8/Bid/Bax/Bak/cytochrome c arm. Both arms impinge upon, and activate, procaspase 9 via two different cleavage sites within the procaspase 9 molecule (D330 and D315, respectively). This is the first in vivo demonstration that the "effector" caspase 3 plays an "initiator" role in the regulation of caspase 9. The dsRNA-induced apoptosis is potentiated by the inhibition of protein synthesis, whose role is to accelerate the execution of all apoptosis steps downstream of, and including, the activation of caspase 8. Thus, efficient apoptosis in response to viral dsRNA results from the co-operation of the two major apical caspases (8 and 9) and the dsRNA-activated protein kinase R (PKR)/ribonuclease L (RNase L) system that is essential for the inhibition of protein synthesis in response to viral infection.


Asunto(s)
Apoptosis , Neoplasias de la Mama/patología , Caspasas/metabolismo , Virus de la Encefalomiocarditis/fisiología , ARN Bicatenario/metabolismo , Caspasa 9 , Línea Celular Tumoral , Virus de la Encefalomiocarditis/genética , Activación Enzimática , Femenino , Células HeLa , Humanos
2.
Apoptosis ; 10(1): 167-76, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15711932

RESUMEN

Rapid elimination of virus-infected cells by apoptosis is an efficient anti-viral strategy. Double-stranded RNA (dsRNA), a viral product, is potently and rapidly apoptogenic in susceptible cells. Caspase 8 plays an important role in the dsRNA-induced apoptosis; however, the mechanisms of caspase 8 activation in response to dsRNA are unknown. We demonstrate here that, in HeLa cells, the dsRNA-triggered activation of caspase 8 is independent of ongoing proteins synthesis (and is, therefore, independent of changes in pro- and anti-apoptotic gene expression) and involves the formation of multiprotein dsRNA-triggered death inducing signaling complexes (dsRNA-DISCs). DsRNA-DISCs contain FADD, TRADD, and caspase 8; however, several experimental approaches suggest that death ligands and death receptors (such as Fas/Apo1 and DR4/Apo2) are not involved in the formation of dsRNA-DISCs.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Apoptosis , Caspasas/metabolismo , ARN Bicatenario/metabolismo , Receptores del Factor de Necrosis Tumoral/metabolismo , Transducción de Señal , Péptidos y Proteínas Asociados a Receptores de Factores de Necrosis Tumoral/metabolismo , Caspasa 8 , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte , Proteína de Dominio de Muerte Asociada a Fas , Células HeLa , Humanos
3.
Crit Rev Oncol Hematol ; 39(1-2): 79-86, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11418304

RESUMEN

Targeting CD22 on human B-cells with a monoclonal antibody conjugated to a cytotoxic RNAse causes potent and specific killing of the lymphoma cells in vitro. This translates to anti-tumor effects in human lymphoma models in SCID mice. RNA damage caused by RNAses could be an important alternative to standard DNA damaging chemotherapeutics. Moreover, targeted RNAses may overcome problems of toxicity and immunogenicity associated with plant or bacterial toxin containing immunotoxins.


Asunto(s)
Antígenos CD/inmunología , Antígenos de Diferenciación de Linfocitos B/inmunología , Moléculas de Adhesión Celular , Inmunotoxinas/uso terapéutico , Lectinas , Linfoma de Células B/tratamiento farmacológico , Ribonucleasas/uso terapéutico , Animales , Anticuerpos Monoclonales/uso terapéutico , Antígenos de Neoplasias/inmunología , Humanos , Inmunotoxinas/química , ARN/metabolismo , Lectina 2 Similar a Ig de Unión al Ácido Siálico
4.
Mol Cell Biol ; 21(1): 61-72, 2001 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11113181

RESUMEN

Double-stranded RNA (dsRNA) of viral origin triggers two programs of the innate immunity in virus-infected cells. One is intended to decrease the rate of host cell protein synthesis and thus to prevent viral replication. This program is mediated by protein kinase R (PKR) and by RNase L and contributes, eventually, to the self-elimination of the infected cell via apoptosis. The second program is responsible for the production of antiviral (type I) interferons and other alarmone cytokines and serves the purpose of preparing naive cells for the viral invasion. This second program requires the survival of the infected cell and depends on the expression of antiapoptotic genes through the activation of the NF-kappaB transcription factor. The second program therefore relies on ongoing transcription and translation. It has been proposed that PKR plays an essential role in the activation of NF-kappaB by dsRNA. Here we present evidence that the dsRNA-induced NF-kappaB activity and the expression of beta interferon and inflammatory cytokines do not require either PKR or RNase L. Our results indicate, therefore, that the two dsRNA-activated programs are separate and can function independently of each other.


Asunto(s)
Virus de la Encefalomiocarditis/genética , Endorribonucleasas/metabolismo , Proteínas I-kappa B , FN-kappa B/metabolismo , ARN Bicatenario/metabolismo , ARN Viral/metabolismo , eIF-2 Quinasa/metabolismo , Transporte Activo de Núcleo Celular , Animales , Apoptosis , Línea Celular , Cisteína Endopeptidasas/metabolismo , ADN/genética , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Endorribonucleasas/deficiencia , Endorribonucleasas/genética , Eliminación de Gen , Regulación de la Expresión Génica , Interferón beta/genética , Interleucina-6/genética , Ratones , Complejos Multienzimáticos/metabolismo , Fosforilación , Complejo de la Endopetidasa Proteasomal , Procesamiento Proteico-Postraduccional , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor de Necrosis Tumoral alfa/genética , Ubiquitinas/metabolismo , eIF-2 Quinasa/deficiencia , eIF-2 Quinasa/genética
5.
Cancer Res ; 60(7): 1983-94, 2000 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-10766189

RESUMEN

Cytotoxic endoribonucleases (RNases) possess a potential for use in cancer therapy. However, the molecular determinants of RNase-induced cell death are not well understood. In this work, we identify such determinants of the cytotoxicity induced by onconase, an amphibian cytotoxic RNase. Onconase displayed a remarkable specificity for tRNA in vivo, leaving rRNA and mRNA apparently undamaged. Onconase-treated cells displayed apoptosis-associated cell blebbing, nuclear pyknosis and fragmentation (karyorrhexis), DNA fragmentation, and activation of caspase-3-like activity. The cytotoxic action of onconase correlated with inhibition of protein synthesis; however, we present evidence for the existence of a mechanism of onconase-induced apoptosis that is independent of inhibition of protein synthesis. The caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp(OMe) fluoromethyl ketone (zVADfmk), at concentrations that completely prevent apoptosis and caspase activation induced by ligation of the death receptor Fas, had only a partial protective effect on onconase-induced cell death. The proapoptotic activity of the p53 tumor suppressor protein and the Fas ligand/Fas/Fas-associating protein with death domain (FADD)/caspase-8 proapoptotic cascade were not required for onconase-induced apoptosis. Procaspases-9, -3, and -7 were processed in onconase-treated cells, suggesting the involvement of the mitochondrial apoptotic machinery in onconase-induced apoptosis. However, the onconase-induced activation of the caspase-9/caspase-3 cascade correlated with atypically little release of cytochrome c from mitochondria. In turn, the low levels of cytochrome c released from mitochondria correlated with a lack of detectable translocation of proapoptotic Bax from the cytosol onto mitochondria in response to onconase. This suggests the possibility of involvement of a different, potentially Bax- and cytochrome c-independent mechanism of caspase-9 activation in onconase-treated cells. As one possible mechanism, we demonstrate that procaspase-9 is released from mitochondria in onconase-treated cells. A detailed understanding of the molecular determinants of the cytotoxic action of onconase could provide means of positive or negative therapeutic modulation of the activity of this potent anticancer agent.


Asunto(s)
Antineoplásicos/toxicidad , Apoptosis/efectos de los fármacos , Proteínas del Huevo/metabolismo , Proteínas del Huevo/toxicidad , Biosíntesis de Proteínas/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/toxicidad , Proteínas Proto-Oncogénicas c-bcl-2 , ARN de Transferencia/metabolismo , Ribonucleasas/metabolismo , Ribonucleasas/toxicidad , Apoptosis/fisiología , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cicloheximida/toxicidad , Grupo Citocromo c/metabolismo , Emetina/toxicidad , Células HeLa , Humanos , Leucina/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , ARN Mensajero/metabolismo , Especificidad por Sustrato , Proteína X Asociada a bcl-2
6.
Mol Cell Biol Res Commun ; 4(2): 122-8, 2000 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-11170843

RESUMEN

Onconase, an anticancer ribonuclease, damages cellular tRNA and causes caspase-dependent apoptosis in targeted cells (M. S. Iordanov, O. P. Ryabinina, J. Wong, T. H. Dinh, D. L. Newton, S. M. Rybak, and B. E. Magun. Cancer Res. 60, 1983-1994, 2000). The proapoptotic action of onconase depends on its RNase activity, but the molecular mechanisms leading to RNA damage-induced caspase activation are completely unknown. In this study, we have investigated whether onconase activates two signal-transduction pathways commonly stimulated by conventional chemo- and radiotherapy, namely the stress-activated protein kinase (SAPK) cascade and the pathway leading to the activation of nuclear factor-kappa B (NF-kappaB). We found that, in all cell types tested, onconase is a potent activator of SAPK1 (JNK1 and JNK2) and SAPK2 (p38 MAP kinase), but that it is incapable of activating NF-kappaB. Inhibition of p38 MAP kinase activity with a pharmacological inhibitor, SB203580, demonstrated that p38 MAP kinase is not required for onconase cytotoxicity. Using explanted fibroblasts from mice that contain targeted disruption of both jnk1 and jnk2 alleles, we found that JNKs are important mediators of onconase-induced cytotoxicity. Surprisingly, following the immortalization of these same cells with human papilloma virus (HPV16) gene products E6 and E7, additional proapoptotic pathways (exclusive of JNK) were provoked by onconase. Our results demonstrate that onconase may activate proapoptotic pathways in tumor cells that are not able to be accessed in normal cells. These results present the possibility that the cytotoxic activity of onconase in normal cells may be reduced by blocking the activity of JNKs.


Asunto(s)
Apoptosis/efectos de los fármacos , Proteínas de Unión al Calcio , Caspasas/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , ARN/metabolismo , Supervivencia Celular/efectos de los fármacos , Activación Enzimática , Inhibidores Enzimáticos , Eosina Amarillenta-(YS) , Células HeLa/efectos de los fármacos , Hematoxilina , Humanos , Immunoblotting , Ligasas/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteína Quinasa 8 Activada por Mitógenos , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , FN-kappa B/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Oncogénicas Virales/metabolismo , Proteínas E7 de Papillomavirus , Fosforilación , Sinaptotagminas , Transfección , Células Tumorales Cultivadas/metabolismo , Células Tumorales Cultivadas/virología , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos
7.
Mol Cell Biol ; 20(2): 617-27, 2000 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-10611240

RESUMEN

Double-stranded RNA (dsRNA) accumulates in virus-infected mammalian cells and signals the activation of host defense pathways of the interferon system. We describe here a novel form of dsRNA-triggered signaling that leads to the stimulation of the p38 mitogen-activated protein kinase (p38 MAPK) and the c-Jun NH(2)-terminal kinase (JNK) and of their respective activators MKK3/6 and SEK1/MKK4. The dsRNA-dependent signaling to p38 MAPK was largely intact in cells lacking both RNase L and the dsRNA-activated protein kinase (PKR), i. e., the two best-characterized mediators of dsRNA-triggered antiviral responses. In contrast, activation of both MKK4 and JNK by dsRNA was greatly reduced in cells lacking RNase L (or lacking both RNase L and PKR) but was restored in these cells when introduction of dsRNA was followed by inhibition of ongoing protein synthesis or transcription. These results are consistent with the notion that the role of RNase L and PKR in the activation of MKK4 and JNK is the elimination, via inhibition of protein synthesis, of a labile negative regulator(s) of the signaling to JNK acting upstream of SEK1/MKK4. In the course of these studies, we identified a long-sought site of RNase L-mediated cleavage in the 28S rRNA, which could cause inhibition of translation, thus allowing the activation of JNK by dsRNA. We propose that p38 MAPK is a general participant in dsRNA-triggered cellular responses, whereas the activation of JNK might be restricted to cells with reduced rates of protein synthesis. Our studies demonstrate the existence of alternative (RNase L- and PKR-independent) dsRNA-triggered signaling pathways that lead to the stimulation of stress-activated MAPKs. Activation of p38 MAPK (but not of JNK) was demonstrated in mouse fibroblasts in response to infection with encephalomyocarditis virus (ECMV), a picornavirus that replicates through a dsRNA intermediate. Fibroblasts infected with EMCV (or treated with dsRNA) produced interleukin-6, an inflammatory and pyrogenic cytokine, in a p38 MAPK-dependent fashion. These findings suggest that stress-activated MAPKs participate in mediating inflammatory and febrile responses to viral infections.


Asunto(s)
Virus de la Encefalomiocarditis/fisiología , Endorribonucleasas/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , ARN Bicatenario/farmacología , eIF-2 Quinasa/metabolismo , Animales , Línea Celular , Virus de la Encefalomiocarditis/genética , Endorribonucleasas/genética , Activación Enzimática/efectos de los fármacos , Fibroblastos , Eliminación de Gen , Humanos , Interleucina-6/biosíntesis , Proteínas Quinasas JNK Activadas por Mitógenos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Modelos Biológicos , Fosforilación/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Biosíntesis de Proteínas/genética , Inhibidores de la Síntesis de la Proteína/farmacología , ARN Bicatenario/genética , ARN Bicatenario/fisiología , ARN Ribosómico 28S/genética , ARN Ribosómico 28S/metabolismo , Ratas , Proteínas Represoras/metabolismo , eIF-2 Quinasa/genética , Proteínas Quinasas p38 Activadas por Mitógenos
8.
J Biol Chem ; 274(36): 25801-6, 1999 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-10464319

RESUMEN

Irradiation of mammalian cells with ultraviolet-B radiation (UV-B) triggers the activation of a group of stress-activated protein kinases known as c-Jun NH(2)-terminal kinases (JNKs). UV-B activates JNKs via UV-B-induced ribotoxic stress. Because oxidative stress also activates JNKs, we have addressed the question of whether the ribotoxic and the oxidative stress responses are mechanistically similar. The pro-oxidants sodium arsenite, cadmium chloride, and hydrogen peroxide activated JNK1 with slow kinetics, whereas UV-B potentiated the activity of JNK1 rapidly. N-acetyl cysteine (a scavenger of reactive oxygen intermediates) abolished the ability of all oxidative stressors tested to activate JNK1, but failed to affect the activation of JNK1 by UV-B or by another ribotoxic stressor, the antibiotic anisomycin. In contrast, emetine, an inhibitor of the ribotoxic stress response, was unable to inhibit the activation of JNK1 by oxidative stressors. Although UV-A and long wavelength UV-B are the spectral components of the ultraviolet solar radiation that cause significant oxidative damage to macromolecules, the use of a filter to eliminate the radiation output from wavelengths below 310 nm abolished the activation of JNK1 by UV. Our results are consistent with the notion that UV-B and oxidative stressors trigger the activation of JNK1 through different signal transduction pathways.


Asunto(s)
Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Proteínas Quinasas Activadas por Mitógenos , Animales , Células Cultivadas , Activación Enzimática/efectos de la radiación , Fibroblastos , Proteínas Quinasas JNK Activadas por Mitógenos , Estrés Oxidativo , Ratas , Rayos Ultravioleta
9.
J Biol Chem ; 273(25): 15794-803, 1998 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-9624179

RESUMEN

The ribotoxic stress response, which is conserved between prokaryotes and eukaryotes, is a cellular reaction to cytotoxic interference with the function of the 3'-end of the large (23 S/28 S) ribosomal RNA. The 3'-end of the large rRNA is directly involved in the three sequential steps of translational elongation: the aminoacyl-tRNA binding, the peptidyl transfer, and the ribosomal translocation. In mammalian cells, the ribotoxic stress response involves activation of the stress-activated protein kinase/c-Jun NH2-terminal kinase and the p38 mitogen-activated protein kinase and transcriptional induction of immediate early genes such as c-fos and c-jun. Active ribosomes are essential mediators of the ribotoxic stress response. We demonstrate here that the transcriptional response of mammalian cells to ultraviolet radiation (UV response) displays the characteristics of a ribotoxic stress response, inasmuch as (i) the activation of stress kinases and gene expression in response to UV requires the presence of active ribosomes at the moment of irradiation; (ii) UV irradiation inhibits protein synthesis; and (iii) irradiation of cells with UV causes specific damage to the 3'-end of the 28 S rRNA. In contrast, the activation of the stress kinases by hyperosmolarity, by the DNA-cross-linking agent diepoxybutane, or by growth factors and cytokines does not depend on the presence of active ribosomes. Our results identify UV as a potential ribotoxic stressor and support the notion that some of the cellular signaling cascades in response to UV might be generated in the ribosome, possibly triggered by damage to rRNA.


Asunto(s)
Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Proteínas Fúngicas , MAP Quinasa Quinasa 4 , Quinasas de Proteína Quinasa Activadas por Mitógenos , Proteínas Quinasas Activadas por Mitógenos , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , ARN Ribosómico 28S/efectos de la radiación , Estrés Fisiológico/fisiopatología , Rayos Ultravioleta , Animales , Secuencia de Bases , Endorribonucleasas/metabolismo , Activación Enzimática/efectos de la radiación , Fibroblastos/enzimología , Fibroblastos/efectos de la radiación , Genes fos/genética , Genes jun/genética , Células HeLa , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos , Datos de Secuencia Molecular , Conformación de Ácido Nucleico/efectos de la radiación , ARN Ribosómico 28S/metabolismo , Ratas , Transcripción Genética
10.
J Biol Chem ; 273(6): 3528-34, 1998 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-9452478

RESUMEN

The tumor promoter palytoxin has been found to activate the stress-activated protein kinase/c-Jun NH2-terminal kinase 1 (SAPK/JNK1), and it also potentiates, as demonstrated here, the p38/HOG1 mitogen-activated protein kinase and the upstream activator of SAPK/JNK1, SEK1/MKK4. In search of possible mechanisms for both the cytotoxicity and the activation of stress kinases by palytoxin, we found that palytoxin is a potent inhibitor of cellular protein synthesis. The inhibition of translation by palytoxin does not result from its direct binding to the translational apparatus. We have previously demonstrated that ribotoxic stressors (Iordanov, M. S., Pribnow, D., Magun, J. L., Dinh, T.-H., Pearson, J. A., Chen, S. L.-Y., and Magun, B. E. (1997) Mol. Cell. Biol. 17, 3373-3381) signal the activation of SAPK/JNK1 by binding to or covalently modifying 28 S rRNA in ribosomes that are active at the time of exposure to the stressor. Palytoxin acted as a ribotoxic stressor, inasmuch as it required actively translating ribosomes at the time of exposure to activate SAPK/JNK1. Palytoxin has been shown to augment ion fluxes by binding to the Na+/K+-ATPase in the plasma membrane of cells. To determine whether altered fluxes of either Na+ or K+ could be responsible for the effects of palytoxin on translation and on activation of SAPK/JNK1, cells were exposed to palytoxin in modified culture medium in which a major portion of the Na+ was replaced by either K+ or by choline+. The substitution of Na+ by K+ strongly inhibited the ability of palytoxin both to inhibit protein translation and to activate SAPK/JNK1, whereas the substitution of Na+ by choline+ did not. These results suggest that palytoxin-induced efflux of cellular K+ mimics ribotoxic stress by provoking both translational inhibition and activation of protein kinases associated with cellular defense against stress.


Asunto(s)
Acrilamidas/farmacología , Potasio/metabolismo , Proteínas Quinasas/metabolismo , Inhibidores de la Síntesis de la Proteína/farmacología , Ribosomas/efectos de los fármacos , Animales , Línea Celular , Venenos de Cnidarios , Activación Enzimática , Transporte Iónico , Biosíntesis de Proteínas/efectos de los fármacos , Proteínas Quinasas/genética , Ratas , Ribosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA