Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Cell Physiol ; 64(7): 746-757, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37098213

RESUMEN

Lysin motif receptor-like kinases (LysM-RLKs) are involved in the perception of chitooligosaccharides (COs) and related lipochitooligosaccharides (LCOs) in plants. Expansion and divergence of the gene family during evolution have led to various roles in symbiosis and defense. By studying proteins of the LYR-IA subclass of LysM-RLKs of the Poaceae, we show here that they are high-affinity LCO-binding proteins with a lower affinity for COs, consistent with a role in LCO perception to establish arbuscular mycorrhiza (AM). In Papilionoid legumes, whole-genome duplication has resulted in two LYR-IA paralogs, MtLYR1 and MtNFP in Medicago truncatula, with MtNFP playing an essential role in root nodule symbiosis with nitrogen-fixing rhizobia. We show that MtLYR1 has retained the ancestral LCO-binding characteristic and is dispensable for AM. Domain swapping between the three LysMs of MtNFP and MtLYR1 and mutagenesis in MtLYR1 suggest that the MtLYR1 LCO-binding site is on the second LysM and that divergence in MtNFP led to better nodulation, but surprisingly with decreased LCO binding. These results suggest that divergence of the LCO-binding site has been important for the evolution of a role of MtNFP in nodulation with rhizobia.


Asunto(s)
Medicago truncatula , Micorrizas , Medicago truncatula/genética , Medicago truncatula/metabolismo , Proteínas de Plantas/metabolismo , Micorrizas/metabolismo , Simbiosis/genética , Quitina/metabolismo
2.
J Exp Bot ; 72(10): 3821-3834, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33675231

RESUMEN

Lipo-chitooligosaccharides (LCOs) were originally found as symbiotic signals called Nod Factors (Nod-LCOs) controlling the nodulation of legumes by rhizobia. More recently, LCOs were also found in symbiotic fungi and, more surprisingly, very widely in the kingdom Fungi, including in saprophytic and pathogenic fungi. The LCO-V(C18:1, fucosylated/methyl fucosylated), hereafter called Fung-LCOs, are the LCO structures most commonly found in fungi. This raises the question of how legume plants such as Medicago truncatula can discriminate between Nod-LCOs and Fung-LCOs. To address this question, we performed a genome-wide association study on 173 natural accessions of M. truncatula, using a root branching phenotype and a newly developed local score approach. Both Nod-LCOs and Fung-LCOs stimulated root branching in most accessions, but the root responses to these two types of LCO molecules were not correlated. In addition, the heritability of the root response was higher for Nod-LCOs than for Fung-LCOs. We identified 123 loci for Nod-LCO and 71 for Fung-LCO responses, of which only one was common. This suggests that Nod-LCOs and Fung-LCOs both control root branching but use different molecular mechanisms. The tighter genetic constraint of the root response to Fung-LCOs possibly reflects the ancestral origin of the biological activity of these molecules.


Asunto(s)
Medicago truncatula , Micorrizas , Quitina/análogos & derivados , Quitosano , Estudio de Asociación del Genoma Completo , Lipopolisacáridos , Medicago truncatula/genética , Oligosacáridos , Transducción de Señal , Simbiosis
3.
PLoS One ; 15(10): e0235446, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33002000

RESUMEN

We recently described a regulatory loop, which we termed autoregulation of infection (AOI), by which Sinorhizobium meliloti, a Medicago endosymbiont, downregulates the root susceptibility to secondary infection events via ethylene. AOI is initially triggered by so-far unidentified Medicago nodule signals named signal 1 and signal 1' whose transduction in bacteroids requires the S. meliloti outer-membrane-associated NsrA receptor protein and the cognate inner-membrane-associated adenylate cyclases, CyaK and CyaD1/D2, respectively. Here, we report on advances in signal 1 identification. Signal 1 activity is widespread as we robustly detected it in Medicago nodule extracts as well as in yeast and bacteria cell extracts. Biochemical analyses indicated a peptidic nature for signal 1 and, together with proteomic analyses, a universally conserved Medicago ribosomal protein of the uL2 family was identified as a candidate signal 1. Specifically, MtRPuL2A (MtrunA17Chr7g0247311) displays a strong signal activity that requires S. meliloti NsrA and CyaK, as endogenous signal 1. We have shown that MtRPuL2A is active in signaling only in a non-ribosomal form. A Medicago truncatula mutant in the major symbiotic transcriptional regulator MtNF-YA1 lacked most signal 1 activity, suggesting that signal 1 is under developmental control. Altogether, our results point to the MtRPuL2A ribosomal protein as the candidate for signal 1. Based on the Mtnf-ya1 mutant, we suggest a link between root infectiveness and nodule development. We discuss our findings in the context of ribosomal protein moonlighting.


Asunto(s)
Medicago truncatula , Proteínas de Plantas/metabolismo , Proteínas Ribosómicas/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo , Sinorhizobium meliloti/metabolismo , Coinfección/prevención & control , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago truncatula/microbiología , Inmunidad de la Planta/genética , Proteínas de Plantas/genética , Nodulación de la Raíz de la Planta/fisiología , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Proteínas Ribosómicas/genética , Nódulos de las Raíces de las Plantas/microbiología , Transducción de Señal , Simbiosis
4.
Nat Commun ; 11(1): 3897, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32753587

RESUMEN

Lipo-chitooligosaccharides (LCOs) are signaling molecules produced by rhizobial bacteria that trigger the nodulation process in legumes, and by some fungi that also establish symbiotic relationships with plants, notably the arbuscular and ecto mycorrhizal fungi. Here, we show that many other fungi also produce LCOs. We tested 59 species representing most fungal phyla, and found that 53 species produce LCOs that can be detected by functional assays and/or by mass spectroscopy. LCO treatment affects spore germination, branching of hyphae, pseudohyphal growth, and transcription in non-symbiotic fungi from the Ascomycete and Basidiomycete phyla. Our findings suggest that LCO production is common among fungi, and LCOs may function as signals regulating fungal growth and development.


Asunto(s)
Quitina/análogos & derivados , Quitina/metabolismo , Hongos/crecimiento & desarrollo , Hongos/metabolismo , Transducción de Señal/fisiología , Ascomicetos/crecimiento & desarrollo , Basidiomycota/crecimiento & desarrollo , Quitosano , Ecología , Ácidos Grasos/metabolismo , Micorrizas/fisiología , Oligosacáridos , Rhizobium/metabolismo , Esporas Fúngicas/crecimiento & desarrollo , Simbiosis/fisiología
5.
Plant J ; 102(2): 311-326, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31782853

RESUMEN

The formation of nitrogen-fixing nodules on legume hosts is a finely tuned process involving many components of both symbiotic partners. Production of the exopolysaccharide succinoglycan by the nitrogen-fixing bacterium Sinorhizobium meliloti 1021 is needed for an effective symbiosis with Medicago spp., and the succinyl modification to this polysaccharide is critical. However, it is not known when succinoglycan intervenes in the symbiotic process, and it is not known whether the plant lysin-motif receptor-like kinase MtLYK10 intervenes in recognition of succinoglycan, as might be inferred from work on the Lotus japonicus MtLYK10 ortholog, LjEPR3. We studied the symbiotic infection phenotypes of S. meliloti mutants deficient in succinoglycan production or producing modified succinoglycan, in wild-type Medicago truncatula plants and in Mtlyk10 mutant plants. On wild-type plants, S. meliloti strains producing no succinoglycan or only unsuccinylated succinoglycan still induced nodule primordia and epidermal infections, but further progression of the symbiotic process was blocked. These S. meliloti mutants induced a more severe infection phenotype on Mtlyk10 mutant plants. Nodulation by succinoglycan-defective strains was achieved by in trans rescue with a Nod factor-deficient S. meliloti mutant. While the Nod factor-deficient strain was always more abundant inside nodules, the succinoglycan-deficient strain was more efficient than the strain producing only unsuccinylated succinoglycan. Together, these data show that succinylated succinoglycan is essential for infection thread formation in M. truncatula, and that MtLYK10 plays an important, but different role in this symbiotic process. These data also suggest that succinoglycan is more important than Nod factors for bacterial survival inside nodules.


Asunto(s)
Medicago truncatula/microbiología , Proteínas de Plantas/metabolismo , Polisacáridos Bacterianos/metabolismo , Sinorhizobium meliloti/fisiología , Simbiosis , Medicago truncatula/enzimología , Medicago truncatula/genética , Peso Molecular , Mutación , Fijación del Nitrógeno , Fenotipo , Fosfotransferasas/genética , Fosfotransferasas/metabolismo , Proteínas de Plantas/genética , Polisacáridos Bacterianos/genética , Nódulos de las Raíces de las Plantas/enzimología , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/microbiología , Sinorhizobium meliloti/genética
6.
Plant Cell ; 31(10): 2386-2410, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31416823

RESUMEN

Mycorrhizal fungi form mutualistic associations with the roots of most land plants and provide them with mineral nutrients from the soil in exchange for fixed carbon derived from photosynthesis. The common symbiosis pathway (CSP) is a conserved molecular signaling pathway in all plants capable of associating with arbuscular mycorrhizal fungi. It is required not only for arbuscular mycorrhizal symbiosis but also for rhizobia-legume and actinorhizal symbioses. Given its role in such diverse symbiotic associations, we hypothesized that the CSP also plays a role in ectomycorrhizal associations. We showed that the ectomycorrhizal fungus Laccaria bicolor produces an array of lipochitooligosaccharides (LCOs) that can trigger both root hair branching in legumes and, most importantly, calcium spiking in the host plant Populus in a CASTOR/POLLUX-dependent manner. Nonsulfated LCOs enhanced lateral root development in Populus in a calcium/calmodulin-dependent protein kinase (CCaMK)-dependent manner, and sulfated LCOs enhanced the colonization of Populus by L. bicolor Compared with the wild-type Populus, the colonization of CASTOR/POLLUX and CCaMK RNA interference lines by L. bicolor was reduced. Our work demonstrates that similar to other root symbioses, L. bicolor uses the CSP for the full establishment of its mutualistic association with Populus.


Asunto(s)
Canales de Calcio/metabolismo , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Calcio/metabolismo , Laccaria/metabolismo , Lipopolisacáridos/metabolismo , Raíces de Plantas/microbiología , Simbiosis/fisiología , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Regulación de la Expresión Génica de las Plantas , Lipopolisacáridos/química , Micorrizas/crecimiento & desarrollo , Micorrizas/metabolismo , Micorrizas/fisiología , Raíces de Plantas/química , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Populus/genética , Populus/metabolismo , Transducción de Señal
7.
New Phytol ; 223(3): 1505-1515, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31059123

RESUMEN

A complex network of pathways coordinates nodulation and epidermal root hair infection in the symbiotic interaction between rhizobia and legume plants. Whereas nodule formation was known to be autoregulated, it was so far unclear whether a similar control is exerted on the infection process. We assessed the capacity of Medicago plants nodulated by Sinorhizobium meliloti to modulate root susceptibility to secondary bacterial infection or to purified Nod factors in split-root and volatile assays using bacterial and plant mutant combinations. Ethylene implication in this process emerged from gas production measurements, use of a chemical inhibitor of ethylene biosynthesis and of a Medicago mutant affected in ethylene signal transduction. We identified a feedback mechanism that we named AOI (for Autoregulation Of Infection) by which endosymbiotic bacteria control secondary infection thread formation by their rhizospheric peers. AOI involves activation of a cyclic adenosine 3',5'-monophosphate (cAMP) cascade in endosymbiotic bacteria, which decreases both root infectiveness and root susceptibility to bacterial Nod factors. These latter two effects are mediated by ethylene. AOI is a novel component of the complex regulatory network controlling the interaction between Sinorhizobium meliloti and its host plants that emphasizes the implication of endosymbiotic bacteria in fine-tuning the interaction.


Asunto(s)
Etilenos/metabolismo , Medicago truncatula/microbiología , Enfermedades de las Plantas/microbiología , Raíces de Plantas/microbiología , Sinorhizobium meliloti/fisiología , Simbiosis , Proteínas Bacterianas/metabolismo , Modelos Biológicos , Epidermis de la Planta/microbiología , Nodulación de la Raíz de la Planta , Compuestos Orgánicos Volátiles/metabolismo
8.
New Phytol ; 221(4): 2190-2202, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30347445

RESUMEN

Lipo-chitooligosaccharides (LCOs) are microbial symbiotic signals that also influence root growth. In Medicago truncatula, LCOs stimulate lateral root formation (LRF) synergistically with auxin. However, the molecular mechanisms of this phenomenon and whether it is restricted to legume plants are not known. We have addressed the capacity of the model monocot Brachypodium distachyon (Brachypodium) to respond to LCOs and auxin for LRF. For this, we used a combination of root phenotyping assays, live-imaging and auxin quantification, and analysed the regulation of auxin homeostasis genes. We show that LCOs and a low dose of the auxin precursor indole-3-butyric acid (IBA) stimulated LRF in Brachypodium, while a combination of LCOs and IBA led to different regulations. Both LCO and IBA treatments locally increased endogenous indole-3-acetic acid (IAA) content, whereas the combination of LCO and IBA locally increased the endogenous concentration of a conjugated form of IAA (IAA-Ala). LCOs, IBA and the combination differentially controlled expression of auxin homeostasis genes. These results demonstrate that LCOs are active on Brachypodium roots and stimulate LRF probably through regulation of auxin homeostasis. The interaction between LCO and auxin treatments observed in Brachypodium on root architecture opens interesting avenues regarding their possible combined effects during the arbuscular mycorrhizal symbiosis.


Asunto(s)
Brachypodium/crecimiento & desarrollo , Quitina/análogos & derivados , Homeostasis , Ácidos Indolacéticos/farmacología , Lípidos/farmacología , Raíces de Plantas/crecimiento & desarrollo , Brachypodium/efectos de los fármacos , Brachypodium/genética , Quitina/farmacología , Quitosano , Fluorescencia , Homeostasis/efectos de los fármacos , Indoles/metabolismo , Modelos Biológicos , Oligosacáridos , Raíces de Plantas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
9.
Methods Mol Biol ; 1761: 77-83, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29525949

RESUMEN

Almost all legume plants have the capacity to form two types of root organs: lateral roots and nodules (that will host rhizobia that fix nitrogen). Transcriptomic analyses are useful to understand both the similarities and differences between nodule and LR formation and to compare the LR developmental programs used by Arabidopsis and model legumes such as Medicago truncatula. However, in M. truncatula as in Arabidopsis, root cells "committed" to LR formation programs are scattered along the primary root and localized in the inner most layers of the root. To gain access to these cells, a lateral root-inducible system (LRIS) was first developed in Arabidopsis. This LRIS was recently shown to be effective in maize as well. Here we present a LRIS protocol adapted to the model legume Medicago truncatula. Using the same auxin transporter inhibitor and permeant auxin molecules used for Arabidopsis and maize but with slight modifications in their concentrations, we obtained very efficient enrichment and synchronization in LR development stages in M. truncatula.


Asunto(s)
Medicago truncatula/fisiología , Desarrollo de la Planta , Raíces de Plantas/fisiología , Fenotipo , Desarrollo de la Planta/genética , Plantones
10.
Carbohydr Res ; 434: 83-93, 2016 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-27623438

RESUMEN

Soil-dwelling, nitrogen-fixing rhizobia signal their presence to legume hosts by secreting lipo-chitooligomers (LCOs) that are decorated with a variety of chemical substituents. It has long been assumed, but never empirically shown, that the LCO backbone is synthesized first by NodC, NodB, and NodA, followed by addition of one or more substituents by other Nod proteins. By analyzing a collection of in-frame deletion mutants of key nod genes in the bacterium Rhizobium sp. IRBG74 by mass spectrometry, we were able to shed light on the possible substitution order of LCO decorations, and we discovered that the prevailing view is probably erroneous. We found that most substituents could be transferred to a short chitin backbone prior to acylation by NodA, which is probably one of the last steps in LCO biosynthesis. The existence of substituted, short chitin oligomers offers new insights into symbiotic plant-microbe signaling.


Asunto(s)
Quitina/análogos & derivados , Lipopolisacáridos/genética , Rhizobium/genética , Acilación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Quitina/análisis , Quitina/química , Quitina/aislamiento & purificación , Quitosano , Lipopolisacáridos/metabolismo , Espectrometría de Masas , Estructura Molecular , Mutación , Oligosacáridos , Rhizobium/química
11.
Plant Cell ; 27(3): 823-38, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25724637

RESUMEN

Establishment of arbuscular mycorrhizal interactions involves plant recognition of diffusible signals from the fungus, including lipochitooligosaccharides (LCOs) and chitooligosaccharides (COs). Nitrogen-fixing rhizobial bacteria that associate with leguminous plants also signal to their hosts via LCOs, the so-called Nod factors. Here, we have assessed the induction of symbiotic signaling by the arbuscular mycorrhizal (Myc) fungal-produced LCOs and COs in legumes and rice (Oryza sativa). We show that Myc-LCOs and tetra-acetyl chitotetraose (CO4) activate the common symbiosis signaling pathway, with resultant calcium oscillations in root epidermal cells of Medicago truncatula and Lotus japonicus. The nature of the calcium oscillations is similar for LCOs produced by rhizobial bacteria and by mycorrhizal fungi; however, Myc-LCOs activate distinct gene expression. Calcium oscillations were activated in rice atrichoblasts by CO4, but not the Myc-LCOs, whereas a mix of CO4 and Myc-LCOs activated calcium oscillations in rice trichoblasts. In contrast, stimulation of lateral root emergence occurred following treatment with Myc-LCOs, but not CO4, in M. truncatula, whereas both Myc-LCOs and CO4 were active in rice. Our work indicates that legumes and non-legumes differ in their perception of Myc-LCO and CO signals, suggesting that different plant species respond to different components in the mix of signals produced by arbuscular mycorrhizal fungi.


Asunto(s)
Lotus/microbiología , Medicago truncatula/microbiología , Micorrizas/fisiología , Oryza/microbiología , Transducción de Señal , Simbiosis , Señalización del Calcio/efectos de los fármacos , Quitina/análogos & derivados , Quitina/farmacología , Quitosano , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glucuronidasa/metabolismo , Lipopolisacáridos/farmacología , Medicago truncatula/efectos de los fármacos , Medicago truncatula/genética , Datos de Secuencia Molecular , Micorrizas/efectos de los fármacos , Oligosacáridos/farmacología , Oryza/efectos de los fármacos , Oryza/genética , Plantones/efectos de los fármacos , Plantones/microbiología , Transducción de Señal/efectos de los fármacos , Simbiosis/efectos de los fármacos
12.
Curr Biol ; 22(23): 2236-41, 2012 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-23122845

RESUMEN

Legumes establish mutualistic associations with mycorrhizal fungi and with nitrogen-fixing rhizobial bacteria. These interactions occur following plant recognition of Nod factor from rhizobial bacteria and Myc factor from mycorrhizal fungi. A common symbiosis signaling pathway is involved in the recognition of both Nod factor and Myc factor and is required for the establishment of these two symbioses. The outcomes of these associations differ, and therefore, despite the commonality in signaling, there must be mechanisms that allow specificity. In Nod factor signaling, a complex of GRAS-domain transcription factors controls gene expression downstream of the symbiosis signaling pathway. Here, we show that a GRAS-domain transcription factor, RAM1, functions in mycorrhizal-specific signaling. Plants mutated in RAM1 are unable to be colonized by mycorrhizal fungi, with a defect in hyphopodia formation on the surface of the root. RAM1 is specifically required for Myc factor signaling and appears to have no role in Nod factor signaling. RAM1 regulates the expression of RAM2, a glycerol-3-phosphate acyl transferase that promotes cutin biosynthesis to enhance hyphopodia formation. We conclude that mycorrhizal signaling downstream of the symbiosis-signaling pathway has parallels with nodulation-specific signaling and functions to promote mycorrhizal colonization by regulating cutin biosynthesis.


Asunto(s)
Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Lípidos de la Membrana/biosíntesis , Micorrizas/fisiología , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Glicerol-3-Fosfato O-Aciltransferasa/genética , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Nodulación de la Raíz de la Planta , Transducción de Señal , Simbiosis , Factores de Transcripción/genética
13.
Plant Physiol ; 159(4): 1671-85, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22652128

RESUMEN

The formation of root nodules and arbuscular mycorrhizal (AM) roots is controlled by a common signaling pathway including the calcium/calmodulin-dependent kinase Doesn't Make Infection3 (DMI3). While nodule initiation by lipochitooligosaccharide (LCO) Nod factors is well characterized, diffusible AM fungal signals were only recently identified as sulfated and nonsulfated LCOs. Irrespective of different outcomes, the perception of symbiotic LCOs in Medicago truncatula is mediated by the LysM receptor kinase M. truncatula Nod factor perception (MtNFP). To shed light on transcriptional responses toward symbiotic LCOs and their dependence on MtNFP and Ca(2+) signaling, we performed genome-wide expression studies of wild-type, Nod-factor-perception mutant1, and dmi3 mutant roots challenged with Myc- and Nod-LCOs. We show that Myc-LCOs lead to transient, quick responses in the wild type, whereas Nod-LCOs require prolonged incubation for maximal expression activation. While Nod-LCOs are most efficient for an induction of persistent transcriptional changes, sulfated Myc-LCOs are less active, and nonsulfated Myc-LCOs display the lowest capacity to activate and sustain expression. Although all symbiotic LCOs up-regulated a common set of genes, discrete subsets were induced by individual LCOs, suggesting common and specific functions for these in presymbiotic signaling. Surprisingly, even sulfated fungal Myc-LCOs and Sinorhizobium meliloti Nod-LCOs, having very similar structures, each elicited discrete subsets of genes, while a mixture of both Myc-LCOs activated responses deviating from those induced by single treatments. Focusing on the precontact phase, we identified signaling-related and transcription factor genes specifically up-regulated by Myc-LCOs. Comparative gene expression studies in symbiotic mutants demonstrated that transcriptional reprogramming by AM fungal LCOs strictly depends on MtNFP and largely requires MtDMI3.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Lipopolisacáridos/farmacología , Medicago truncatula/genética , Micorrizas/fisiología , Proteínas de Plantas/metabolismo , Simbiosis/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Bioensayo , Difusión/efectos de los fármacos , Genes de Plantas/genética , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/genética , Cinética , Medicago truncatula/efectos de los fármacos , Medicago truncatula/microbiología , Modelos Biológicos , Mutación/genética , Micorrizas/efectos de los fármacos , Proteínas de Plantas/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/microbiología , Regiones Promotoras Genéticas/genética , Reproducibilidad de los Resultados , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Simbiosis/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional/efectos de los fármacos , Activación Transcripcional/genética
14.
Mol Plant Microbe Interact ; 24(12): 1440-7, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21864045

RESUMEN

Bradyrhizobium sp. strain ORS285 is a photosynthetic bacterium that forms nitrogen-fixing nodules on the roots and stems of tropical aquatic legumes of the Aeschynomene genus. The symbiotic interaction of Bradyrhizobium sp. strain ORS285 with certain Aeschynomene spp. depends on the presence of nodulation (nod) genes whereas the interaction with other species is nod gene independent. To study the nod gene-dependent molecular dialogue between Bradyrhizobium sp. strain ORS285 and Aeschynomene spp., we used a nodB-lacZ reporter strain to monitor the nod gene expression with various flavonoids. The flavanones liquiritigenin and naringenin were found to be the strongest inducers of nod gene expression. Chemical analysis of the culture supernatant of cells grown in the presence of naringenin showed that the major Nod factor produced by Bradyrhizobium sp. strain ORS285 is a modified chitin pentasaccharide molecule with a terminal N-C(18:1)-glucosamine and with a 2-O-methyl fucose linked to C-6 of the reducing glucosamine. In this respect, the Bradyrhizobium sp. strain ORS285 Nod factor is the same as the major Nod factor produced by the nonphotosynthetic Bradyrhizobium japonicum USDA110 that nodulates the roots of soybean. This suggests a classic nod gene-dependent molecular dialogue between Bradyrhizobium sp. strain ORS285 and certain Aeschynomene spp. This is supported by the fact that B. japonicum USDA110 is able to form N(2)-fixing nodules on both the roots and stems of Aeschynomene afraspera.


Asunto(s)
Amidohidrolasas/genética , Proteínas Bacterianas/genética , Bradyrhizobium/fisiología , Fabaceae/microbiología , Flavonoides/farmacología , Lipopolisacáridos/química , Fotosíntesis , Amidohidrolasas/efectos de los fármacos , Proteínas Bacterianas/efectos de los fármacos , Bradyrhizobium/efectos de los fármacos , Bradyrhizobium/metabolismo , Fabaceae/fisiología , Flavanonas/química , Flavanonas/farmacología , Flavonoides/química , Fucosa/análogos & derivados , Fucosa/química , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Genes Bacterianos/genética , Genes Reporteros , Datos de Secuencia Molecular , Fijación del Nitrógeno , Nitrogenasa/metabolismo , Raíces de Plantas/microbiología , Raíces de Plantas/fisiología , Tallos de la Planta/microbiología , Tallos de la Planta/fisiología , Nódulos de las Raíces de las Plantas , Transducción de Señal , Simbiosis
15.
Nature ; 469(7328): 58-63, 2011 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-21209659

RESUMEN

Arbuscular mycorrhiza (AM) is a root endosymbiosis between plants and glomeromycete fungi. It is the most widespread terrestrial plant symbiosis, improving plant uptake of water and mineral nutrients. Yet, despite its crucial role in land ecosystems, molecular mechanisms leading to its formation are just beginning to be unravelled. Recent evidence suggests that AM fungi produce diffusible symbiotic signals. Here we show that Glomus intraradices secretes symbiotic signals that are a mixture of sulphated and non-sulphated simple lipochitooligosaccharides (LCOs), which stimulate formation of AM in plant species of diverse families (Fabaceae, Asteraceae and Umbelliferae). In the legume Medicago truncatula these signals stimulate root growth and branching by the symbiotic DMI signalling pathway. These findings provide a better understanding of the evolution of signalling mechanisms involved in plant root endosymbioses and will greatly facilitate their molecular dissection. They also open the way to using these natural and very active molecules in agriculture.


Asunto(s)
Lipopolisacáridos/metabolismo , Micorrizas/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Simbiosis , Secuencia de Carbohidratos , Cromatografía Líquida de Alta Presión , Daucus carota/química , Daucus carota/metabolismo , Daucus carota/microbiología , Glomeromycota/metabolismo , Lipopolisacáridos/química , Medicago truncatula/química , Medicago truncatula/crecimiento & desarrollo , Medicago truncatula/metabolismo , Medicago truncatula/microbiología , Datos de Secuencia Molecular , Extractos Vegetales/química , Extractos Vegetales/metabolismo , Raíces de Plantas/química , Raíces de Plantas/crecimiento & desarrollo , Transducción de Señal , Esporas Fúngicas/química , Esporas Fúngicas/metabolismo
16.
Plant J ; 34(4): 495-506, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12753588

RESUMEN

Establishment of the Rhizobium-legume symbiosis depends on a molecular dialogue, in which rhizobial nodulation (Nod) factors act as symbiotic signals, playing a key role in the control of specificity of infection and nodule formation. Using nodulation-defective (Nod-) mutants of Medicago truncatula to study the mechanisms controlling Nod factor perception and signalling, we have previously identified five genes that control components of a Nod factor-activated signal transduction pathway. Characterisation of a new M. truncatula Nod- mutant led to the identification of the Nod Factor Perception (NFP) locus. The nfp mutant has a novel phenotype among Nod- mutants of M. truncatula, as it does not respond to Nod factors by any of the responses tested. The nfp mutant thus shows no rapid calcium flux, the earliest detectable Nod factor response of wild-type plants, and no root hair deformation. The nfp mutant is also deficient in Nod factor-induced calcium spiking and early nodulin gene expression. While certain genes controlling Nod factor signal transduction also control the establishment of an arbuscular mycorrhizal symbiosis, the nfp mutant shows a wild-type mycorrhizal phenotype. These data indicate that the NFP locus controls an early step of Nod factor signal transduction, upstream of previously identified genes and specific to nodulation.


Asunto(s)
Calcio/metabolismo , Lipopolisacáridos/farmacología , Medicago/efectos de los fármacos , Medicago/genética , Raíces de Plantas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Cromosomas de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/genética , Prueba de Complementación Genética , Péptidos y Proteínas de Señalización Intercelular , Medicago/metabolismo , Mutación , Péptidos , Fenotipo , Mapeo Físico de Cromosoma , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Rhizobium/fisiología , Venenos de Avispas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...