Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuroscience ; 140(2): 415-31, 2006 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-16549271

RESUMEN

At excitatory synapses onto hippocampal CA1 pyramidal cells, activation of cyclic AMP-dependent protein kinase and subsequent down-regulation of protein phosphatases has a crucial role in the induction of long-term potentiation by low-frequency patterns of synaptic stimulation. Because the second messenger cyclic guanosine 3',5'monophosphate can regulate the activity of different forms of the cyclic AMP degrading enzyme phosphodiesterase, we examined whether increases in cyclic guanosine 3',5'monophosphate can modulate long-term potentiation induction in the mouse hippocampal CA1 region through effects on cyclic AMP signaling. Using the cyclic guanosine 3',5'monophosphate-specific phosphodiesterase inhibitor zaprinast or the nitric oxide donor S-nitroso-D,L-penicillamine to elevate cyclic guanosine 3',5'monophosphate levels we found that increases in cyclic guanosine 3',5'monophosphate strongly inhibit the induction of long-term potentiation by low-frequency patterns of synaptic stimulation where protein kinase A activation is required for long-term potentiation induction. In contrast, zaprinast and S-nitroso-D,L-penicillamine had no effect on the induction of long-term potentiation by high-frequency patterns of synaptic stimulation that induce long-term potentiation in a protein kinase A-independent manner. Directly activating protein kinase A with the phosphodiesterase-resistant cyclic AMP analog 8-Br-cAMP, blocking all phosphodiesterases with 3-isobutyl-1-methylxanthine, or inhibiting protein phosphatases rescued long-term potentiation induction in zaprinast-treated slices. Together, these results suggest that increases in cyclic guanosine 3',5'monophosphate inhibit long-term potentiation by activating phosphodiesterases that interfere with the protein kinase A-mediated suppression of protein phosphatases needed for long-term potentiation induction. Consistent with the notion that this cyclic guanosine 3',5'monophosphate-mediated inhibitory pathway is recruited by some patterns of synaptic activity, blocking cyclic guanosine 3',5'monophosphate production strongly facilitated the induction of long-term potentiation by long trains of theta-frequency synaptic stimulation. Together, our results indicate that increases in cyclic guanosine 3',5'monophosphate can act as a long-term potentiation suppressor mechanism that selectively constrains the induction of protein kinase A-dependent forms of long-term potentiation induced by low-frequency patterns of synaptic stimulation.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Hipocampo/metabolismo , Potenciación a Largo Plazo/fisiología , Plasticidad Neuronal/fisiología , Terminales Presinápticos/metabolismo , 8-Bromo Monofosfato de Adenosina Cíclica/farmacología , Animales , AMP Cíclico/metabolismo , Estimulación Eléctrica , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Hipocampo/citología , Hipocampo/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Plasticidad Neuronal/efectos de los fármacos , Donantes de Óxido Nítrico/farmacología , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Inhibidores de Fosfodiesterasa/farmacología , Fosfoproteínas Fosfatasas/efectos de los fármacos , Fosfoproteínas Fosfatasas/metabolismo , Hidrolasas Diéster Fosfóricas/efectos de los fármacos , Hidrolasas Diéster Fosfóricas/metabolismo , Terminales Presinápticos/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología
2.
J Neurosci ; 19(7): 2500-10, 1999 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-10087064

RESUMEN

Activation of the Ca2+- and calmodulin-dependent protein kinase II (CaMKII) and its conversion into a persistently activated form by autophosphorylation are thought to be crucial events underlying the induction of long-term potentiation (LTP) by increases in postsynaptic Ca2+. Because increases in Ca2+ can also activate protein phosphatases that oppose persistent CaMKII activation, LTP induction may also require activation of signaling pathways that suppress protein phosphatase activation. Because the adenylyl cyclase (AC)-protein kinase A signaling pathway may provide a mechanism for suppressing protein phosphatase activation, we investigated the effects of AC activators on activity-dependent changes in synaptic strength and on levels of autophosphorylated alphaCaMKII (Thr286). In the CA1 region of hippocampal slices, briefly elevating extracellular Ca2+ induced an activity-dependent, transient potentiation of synaptic transmission that could be converted into a persistent potentiation by the addition of phosphatase inhibitors or AC activators. To examine activity-dependent changes in alphaCaMKII autophosphorylation, we replaced electrical presynaptic fiber stimulation with an increase in extracellular K+ to achieve a more global synaptic activation during perfusion of high Ca2+ solutions. In the presence of the AC activator forskolin or the protein phosphatase inhibitor calyculin A, this treatment induced a LTP-like synaptic potentiation and a persistent increase in autophosphorylated alphaCaMKII levels. In the absence of forskolin or calyculin A, it had no lasting effect on synaptic strength and induced a persistent decrease in autophosphorylated alphaCaMKII levels. Our results suggest that AC activation facilitates LTP induction by suppressing protein phosphatases and enabling a persistent increase in the levels of autophosphorylated CaMKII.


Asunto(s)
Adenilil Ciclasas/metabolismo , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Transmisión Sináptica/fisiología , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Activación Enzimática , Técnicas In Vitro , Potenciación a Largo Plazo , Ratones , Ratones Endogámicos C57BL , Fosforilación , Receptores de N-Metil-D-Aspartato/fisiología , Transducción de Señal/fisiología , Estimulación Química
3.
Nature ; 396(6710): 433-9, 1998 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-9853749

RESUMEN

Specific patterns of neuronal firing induce changes in synaptic strength that may contribute to learning and memory. If the postsynaptic NMDA (N-methyl-D-aspartate) receptors are blocked, long-term potentiation (LTP) and long-term depression (LTD) of synaptic transmission and the learning of spatial information are prevented. The NMDA receptor can bind a protein known as postsynaptic density-95 (PSD-95), which may regulate the localization of and/or signalling by the receptor. In mutant mice lacking PSD-95, the frequency function of NMDA-dependent LTP and LTD is shifted to produce strikingly enhanced LTP at different frequencies of synaptic stimulation. In keeping with neural-network models that incorporate bidirectional learning rules, this frequency shift is accompanied by severely impaired spatial learning. Synaptic NMDA-receptor currents, subunit expression, localization and synaptic morphology are all unaffected in the mutant mice. PSD-95 thus appears to be important in coupling the NMDA receptor to pathways that control bidirectional synaptic plasticity and learning.


Asunto(s)
Aprendizaje/fisiología , Potenciación a Largo Plazo/fisiología , Proteínas del Tejido Nervioso/fisiología , Transducción de Señal , Animales , Homólogo 4 de la Proteína Discs Large , Electrofisiología , Marcación de Gen , Guanilato-Quinasas , Hipocampo/fisiología , Péptidos y Proteínas de Señalización Intracelular , Discapacidades para el Aprendizaje/fisiopatología , Aprendizaje por Laberinto/fisiología , Proteínas de la Membrana , Memoria/fisiología , Ratones , Ratones Endogámicos C57BL , Modelos Neurológicos , Mutación , Receptores de N-Metil-D-Aspartato/fisiología , Sinapsis/fisiología
4.
J Neurosci ; 18(18): 7118-26, 1998 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-9736635

RESUMEN

Long-term potentiation (LTP), a persistent enhancement of synaptic transmission that may be involved in some forms of learning and memory, is induced at excitatory synapses in the CA1 region of the hippocampus by coincident presynaptic and postsynaptic activity. Although action potentials back-propagating into dendrites of hippocampal pyramidal cells provide sufficient postsynaptic activity to induce LTP under some in vitro conditions, it is not known whether LTP can be induced by patterns of postsynaptic action potential firing that occur in these cells in vivo. Here we report that a characteristic in vivo pattern of action potential generation in CA1 pyramidal cells known as the complex spike burst enables the induction of LTP during theta frequency synaptic stimulation in the CA1 region of hippocampal slices maintained in vitro. Our results suggest that complex spike bursting may have an important role in synaptic processes involved in learning and memory formation, perhaps by producing a highly sensitive postsynaptic state during which even low frequencies of presynaptic activity can induce LTP.


Asunto(s)
Hipocampo/fisiología , Potenciación a Largo Plazo/fisiología , Transmisión Sináptica/fisiología , Ritmo Teta , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/fisiología , Hipocampo/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Periodicidad , Células Piramidales/química , Células Piramidales/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Transmisión Sináptica/efectos de los fármacos , Tetrodotoxina/farmacología
5.
Brain Res ; 794(1): 75-9, 1998 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-9630529

RESUMEN

In mouse hippocampal slices, long-term potentiation (LTP) at Schaffer collateral fiber synapses onto CA1 pyramidal cells could be induced by brief trains of 5-Hz synaptic stimulation (30 s) or by longer trains of 5-Hz stimulation (3 min) delivered during beta-adrenergic receptor activation. In contrast, 5-Hz stimulation, either alone or in the presence of the beta-adrenergic receptor agonist isoproterenol, failed to induce LTP at associational-commissural (assoc-com) fiber synapses onto CA3 pyramidal cells. Our results suggest that although CA3 pyramidal cells give rise to both the Schaffer collateral fiber synapses in CA1 and the assoc-com fiber synapses in CA3, the induction of LTP at these synapses may be regulated by different activity- and modulatory neurotransmitter-dependent processes.


Asunto(s)
Agonistas Adrenérgicos beta/farmacología , Axones/fisiología , Hipocampo/fisiología , Potenciación a Largo Plazo , Células Piramidales/ultraestructura , Sinapsis/fisiología , Animales , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores , Hipocampo/ultraestructura , Técnicas In Vitro , Isoproterenol/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL
6.
Nat Genet ; 16(1): 28-36, 1997 May.
Artículo en Inglés | MEDLINE | ID: mdl-9140392

RESUMEN

Using Down syndrome as a model for complex trait analysis, we sought to identify loci from chromosome 21q22.2 which, when present in an extra dose, contribute to learning abnormalities. We generated low-copy-number transgenic mice, containing four different yeast artificial chromosomes (YACs) that together cover approximately 2 megabases (Mb) of contiguous DNA from 21q22.2. We subjected independent lines derived from each of these YAC transgenes to a series of behavioural and learning assays. Two of the four YACs caused defects in learning and memory in the transgenic animals, while the other two YACs had no effect. The most severe defects were caused by a 570-kb YAC; the interval responsible for these defects was narrowed to a 180-kb critical region as a consequence of YAC fragmentation. This region contains the human homologue of a Drosophila gene, minibrain, and strongly implicates it in learning defects associated with Down syndrome.


Asunto(s)
Conducta Animal/fisiología , Síndrome de Down/genética , Aprendizaje/fisiología , Ratones Transgénicos/genética , Proteínas Serina-Treonina Quinasas/genética , Animales , Encéfalo/patología , Cromosomas Artificiales de Levadura , Electrofisiología , Ojo/patología , Dosificación de Gen , Humanos , Aprendizaje por Laberinto/fisiología , Ratones , Datos de Secuencia Molecular , Actividad Motora/genética , Proteínas Tirosina Quinasas , Homología de Secuencia de Ácido Nucleico , Transgenes , Quinasas DyrK
7.
Neuron ; 17(3): 475-82, 1996 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-8816710

RESUMEN

beta-Adrenergic receptor activation has a central role in the enhancement of memory formation that occurs during heightened states of emotional arousal. Although beta-adrenergic receptor activation may enhance memory formation by modulating long-term potentiation (LTP), a candidate synaptic mechanism involved in memory formation, the cellular basis of this modulation is not fully understood. Here, we report that, in the CA1 region of the hippocampus, beta-adrenergic receptor activation selectively enables the induction of LTP during long trains of 5 Hz synaptic stimulation. Protein phosphatase inhibitors mimic the effects of beta-adrenergic receptor activation on 5 Hz stimulation-induced LTP, suggesting that activation of noradrenergic systems during emotional arousal may enhance memory formation by inhibiting protein phosphatases that normally oppose the induction of LTP.


Asunto(s)
Hipocampo/fisiología , Potenciación a Largo Plazo/fisiología , Receptores Adrenérgicos beta/fisiología , Animales , Estimulación Eléctrica , Electrofisiología , Hipocampo/química , Hipocampo/citología , Ratones , Ratones Endogámicos C57BL , Células Piramidales/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...