Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Phys Chem Au ; 4(5): 476-489, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39364351

RESUMEN

Lead-free double perovskites (DPs) will emerge as viable and environmentally safe substitutes for Pb-halide perovskites, demonstrating stability and nontoxicity if their optoelectronic property is greatly improved. Doping has been experimentally validated as a powerful tool for enhancing optoelectronic properties and concurrently reducing the defect state density in DP materials. Fundamental understanding of the optical properties of DPs, particularly the self-trapped exciton (STEs) dynamics, plays a critical role in a range of optoelectronic applications. Our study investigates how Fe doping influences the structural and optical properties of Cs2AgBiCl6 DPs by understanding their STEs dynamics, which is currently lacking in the literature. A combined experimental-computational approach is employed to investigate the optoelectronic properties of pure and doped Cs2AgBiCl6 (Fe-Cs2AgBiCl6) perovskites. Successful incorporation of Fe3+ ions is confirmed by X-ray diffraction and Raman spectroscopy. Moreover, the Fe-Cs2AgBiCl6 DPs exhibit strong absorption from below 400 nm up to 700 nm, indicating sub-band gap state transitions originating from surface defects. Photoluminescence (PL) analysis demonstrates a significant enhancement in the PL intensity, attributed to an increased radiative recombination rate and higher STE density. The radiative kinetics and average lifetime are investigated by the time-resolved PL (TRPL) method; in addition, temperature-dependent PL measurements provide valuable insights into activation energy and exciton-phonon coupling strength. Our findings will not only deepen our understanding of charge carrier dynamics associated with STEs but also pave the way for the design of some promising perovskite materials for use in optoelectronics and photocatalysis.

2.
Small ; 20(30): e2309428, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38529777

RESUMEN

Bismuth sulfide (Bi2S3) exhibits a direct energy bandgap and an exceptional optical absorption capability over a broadband radiation, thus presents a novel class of 2D photodetector material. The field effect transistor (FET) photodetector device is fabricated from 2D Bi2S3. An anomalous variation in the transport characteristics of 2D Bi2S3 is observed with the variation in temperature. The electrical resistance reduces by 99.26% at 10 K compared to the response at 300 K. Defects due to the bismuth and sulfur vacancies play a critical role in the dramatic behavior, which is confirmed using photoluminescence, time-resolved photoluminescence, Hall measurements, and energy dispersive X-ray spectroscopy. The density functional theory calculations provide a significant insight into the thermodynamic properties of intrinsic defects in Bi2S3. Moreover, the effect of gate bias on responsivity additionally confirms its invariance at low temperature. The Bi2S3 based FET photodetector achieves ultrahigh responsivity in the order of ≈106 A W-1 and detectivity of ≈1014 Jones. Moreover, the external quantum efficiency of ≈107% is measured in a wide spectrum of optical illumination (532 to 1064 nm) with a noise-equivalent power of 3.5 × 10-18 W/√Hz at a bias of 0.2 V. The extraordinary performance of Bi2S3 photodetector outstands 2D photodetectors.

3.
Microsc Microanal ; : 1-5, 2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33888180

RESUMEN

We report on comparative atom probe tomography investigations of γ/γ'-forming Co­12Ti­4Mo­Cr alloys. Moderate additions of Cr (2 and 4 at%) reduced the γ/γ' lattice misfit and increased the γ' volume fraction of a Co­12Ti­4Mo alloy significantly. These microstructural changes were accompanied by changes in the elemental partitioning between γ and γ' and site-occupancy in γ'. Spatial distribution maps revealed that Mo occupied both Co and Ti sub-lattice sites in γ'. In agreement with the experimental data, thermodynamic calculations predicted a stronger tendency for Mo to occupy the Co-sites than for Cr and an increase in Cr fraction on the Ti-sites with increasing Cr content.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA