Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Med ; 30(1): 47-56, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23517668

RESUMEN

The aim of this study is twofold: (a) determination of the spectral differences for flattening-filter-free (FFF) versus standard (STD) linac under various clinical conditions, (b) based on an extensive list of clinically important beam configurations, identification of clinical scenarios that lead to higher macroscopic dose perturbations due to the presence of high-Z material. The focus is on dose enhancement due to contrast agents including high-Z elements such as gold or gadolinium. EGSnrc was used to simulate clinical beams under various irradiation conditions: open/IMRT/spit-IMRT fields, in/out-off-field areas, different depths and field sizes. Spectra were calculated and analyzed for about 80 beams and for a total of 480 regions. Quantitative differential effects in beam quality were characterized using energy-dependent and cumulative dose perturbation metrics. Analysis of the spectral database showed that even though the general trends for both linacs (FFF/STD) were the same, there were crucial differences. In general, the relative changes between different conditions were smaller for FFF spectra. This was because of the higher component of low-energy photons of the FFF linac, which already lead to higher dose enhancement than for the STD linac (photon energies were more "uniformly" distributed for FFF spectra and henceforth their perturbation resulted in lesser relative changes). For out-of-field FFF spectra and split-IMRT fields the strongest enhancement were observed (∼25 and ∼5 respectively). Different spectral scenarios lead to different dose enhancements, however, they scale with the higher effective-Z of the materials and were directly related to the lower range of the spectra (<200 keV).


Asunto(s)
Aceleradores de Partículas , Dosis de Radiación , Método de Montecarlo , Fotones/uso terapéutico , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada
2.
Med Phys ; 39(6Part16): 3798, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28517204

RESUMEN

PURPOSE: Age-related macular degeneration (AMD) is the leading cause of irreversible vision loss for people over the age of 60 in the United States. In this study the dosimetric feasibility of using gold nanoparticles (AuNP) as radiosensitizers to enhance stereotactic radiosurgery for neovascular AMD is investigated. METHODS: Analytic calculations were carried out to estimate the nucleus dose enhancement factor (nDEF) due to photon-induced photo- /Auger electrons from AuNP targeting neovascular AMD endothelial cells (EC). The nDEF represents the ratio of the dose to the nucleus with and without the presence of AuNP. As in previous studies, the EC is modeled as a slab of 2 µm (thickness) × 10 µm (length) × 10 µm (width) containing a nucleus of 5 µm diameter and thickness of 0.5 - 1 µm. The targeted AuNP are attached to the exterior of the EC. The nDEF was calculated for a range of feasible AuNP local concentrations (1-7 mg/g) using the clinically applicable 100 kVp x-rays employed by the IRayTM system (Oraya Therapeutics Inc. Newark, CA), with total filtration of 0.75 mm Al and 0.8 mm Be. For comparison the nDEF for other energies: 80 kVp, 90 kVp, 110 kVp, and 120 kVp was also investigated. RESULTS: For 100 kVp x-rays, the results revealed nDEF values of 1.30 - 3.26 for the investigated concentration range of 1 - 7 mg/g, respectively. In comparison, for the same concentration range, nDEF values of 1.32 - 3.40, 1.31-3.33, 1.29 - 3.19, 1.28 - 3.12 were calculated for 80 kVp, 90 kVp, 110 kVp, and 120 kVp x-rays, respectively. CONCLUSIONS: The results predict substantial dose enhancement to the sensitive nucleus of neovascular endothelial cells, targeted by AuNP during kilovoltage stereotactic radiosurgery. This suggests that AuNP may be employed as radiosensitizers to enhance therapeutic efficacy during radiosurgery for neovascular AMD.

3.
Med Phys ; 38(5): 2342-52, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21776768

RESUMEN

PURPOSE: This study investigates the benefits of a modified flattening filter free (FFF) linac over the standard (STD) linac equipped with the flattening filter. Energy and angular spread of the electron beam of the FFF linac were modified. Modification of FFF beam parameters is explored to maximize the monitor unit efficiency and to minimize the head scatter in IMRT delivery for large target volumes or targets lying away from the central axis. METHODS: The EGSnrc code is used to model FFF and STD linacs and study basic beam properties for both linac types in various beam configurations. Increasing energy of FFF linac results in similar beam attenuation properties and maximized dose rate compared to STD linac. Matching beam attenuation properties allows a more direct exploration of beam flatness of FFF linac in regard to IMRT delivery, especially away from the central axis where the effective dose rate is considerably smaller than the one at the central axis. Flatness of open beam dose profile of FFF linac is improved by increasing the angular spread of the electron beam. The resulting dose rate within the treatment field and outside of the field (peripheral dose) are characterized and compared to the unmodified FFF and STD linacs, RESULTS: In order to match beam penetration properties, the energy of FFF is adjusted from 6.5 to 8.0 MeV for small to medium field sizes and from 6.5 to 8.5 MeV for larger ones. Dose rate of FFF vs STD linac increased by a factor of 1.9 (6.5 MeV) and 3.4-4.1 (8.0-8.5 MeV). Adjusting the mean angular spread of the electron beam from 0 degrees to 5 degrees-10 degrees resulted in complete flattening of photon beam for field sizes between 10 x 10 cm2 and 15 x 15 cm2 and partial flattening for field sizes from 15 x 15 cm2 to 30 x 30 cm2. Values of angular spread > or =14 degrees are not recommended as they exceed the opening of the primary collimator, affecting the area at the edges of the field. FFF fields of sizes smaller than 6 x 6 cm2 are already flat and beam flattening is not necessary. Overall, the angular spread of 5 degrees-10 degrees is sufficient and can satisfactorily flatten open beam dose profiles even for larger field sizes. Increasing the electron beam angular spread amounts to a slight decrease of dose rate of FFF linac. However, for angular spread, 5 degrees-10 degrees dose rate factor of FFF vs STD is still about 1.6-2.6, depending on the field size (and the adjusted energy). Similarly, in case of peripheral dose, a moderate increase in dose can be observed for angular spread of 5 degrees-10 degrees and for field sizes 10 x 10 cm2 to 30 x 30 cm2. Lastly, beam flatness of not modified FFF linac can be conveniently described by an analytical function representing a ratio of STD vs FFF doses: 1 + b|r|(n). CONCLUSIONS: A modified FFF beamline with increased energy and electron beam angular spread results in satisfactory flattened beam and high dose rate within the field. Peripheral dose remaining at similar (or smaller) level than that of STD linac for the same delivered dose within the treatment field.


Asunto(s)
Filtración/instrumentación , Aceleradores de Partículas/instrumentación , Radioterapia Conformacional/instrumentación , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA