Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros











Intervalo de año de publicación
1.
PLoS One ; 18(4): e0283954, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37014916

RESUMEN

An in vitro model of the human blood-brain barrier was developed, based on a collagen hydrogel containing astrocytes, overlaid with a monolayer of endothelium, differentiated from human induced pluripotent stem cells (hiPSCs). The model was set up in transwell filters allowing sampling from apical and basal compartments. The endothelial monolayer had transendothelial electrical resistance (TEER) values >700Ω.cm2 and expressed tight-junction markers, including claudin-5. After differentiation of hiPSCs the endothelial-like cells expressed VE-cadherin (CDH5) and von-Willebrand factor (VWF) as determined by immunofluorescence. However, electron microscopy indicated that at set-up (day 8 of differentiation), the endothelial-like cells still retained some features of the stem cells, and appeared immature, in comparison with primary brain endothelium or brain endothelium in vivo. Monitoring showed that the TEER declined gradually over 10 days, and transport studies were best carried out in a time window 24-72hrs after establishment of the model. Transport studies indicated low permeability to paracellular tracers and functional activity of P-glycoprotein (ABCB1) and active transcytosis of polypeptides via the transferrin receptor (TFR1).


Asunto(s)
Barrera Hematoencefálica , Células Madre Pluripotentes Inducidas , Humanos , Células Cultivadas , Hidrogeles , Técnicas de Cocultivo , Diferenciación Celular
2.
Int J Mol Sci ; 23(2)2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35054957

RESUMEN

Nanoparticles with oligonucleotides bound to the outside or incorporated into the matrix can be used for gene editing or to modulate gene expression in the CNS. These nanocarriers are usually optimised for transfection of neurons or glia. They can also facilitate transcytosis across the brain endothelium to circumvent the blood-brain barrier. This review examines the different formulations of nanocarriers and their oligonucleotide cargoes, in relation to their ability to enter the brain and modulate gene expression or disease. The size of the nanocarrier is critical in determining the rate of clearance from the plasma as well as the intracellular routes of endothelial transcytosis. The surface charge is important in determining how it interacts with the endothelium and the target cell. The structure of the oligonucleotide affects its stability and rate of degradation, while the chemical formulation of the nanocarrier primarily controls the location and rate of cargo release. Due to the major anatomical differences between humans and animal models of disease, successful gene therapy with oligonucleotides in humans has required intrathecal injection. In animal models, some progress has been made with intraventricular or intravenous injection of oligonucleotides on nanocarriers. However, getting significant amounts of nanocarriers across the blood-brain barrier in humans will likely require targeting endothelial solute carriers or vesicular transport systems.


Asunto(s)
Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/metabolismo , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Nanopartículas , Oligonucleótidos/administración & dosificación , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/ultraestructura , Enfermedades del Sistema Nervioso Central/tratamiento farmacológico , Enfermedades del Sistema Nervioso Central/etiología , Enfermedades del Sistema Nervioso Central/metabolismo , Fenómenos Químicos , Endotelio/efectos de los fármacos , Endotelio/metabolismo , Oro , Humanos , Nanopartículas del Metal , Tamaño de la Partícula
3.
Pharmaceutics ; 13(9)2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34575601

RESUMEN

Blood-brain barrier (BBB) dysfunction is a key hallmark in the pathology of many neuroinflammatory disorders. Extracellular vesicles (EVs) are lipid membrane-enclosed carriers of molecular cargo that are involved in cell-to-cell communication. Circulating endothelial EVs are increased in the plasma of patients with neurological disorders, and immune cell-derived EVs are known to modulate cerebrovascular functions. However, little is known about whether brain endothelial cell (BEC)-derived EVs themselves contribute to BBB dysfunction. Human cerebral microvascular cells (hCMEC/D3) were treated with TNFα and IFNy, and the EVs were isolated and characterised. The effect of EVs on BBB transendothelial resistance (TEER) and leukocyte adhesion in hCMEC/D3 cells was measured by electric substrate cell-substrate impedance sensing and the flow-based T-cell adhesion assay. EV-induced molecular changes in recipient hCMEC/D3 cells were analysed by RT-qPCR and Western blotting. A stimulation of naïve hCMEC/D3 cells with small EVs (sEVs) reduced the TEER and increased the shear-resistant T-cell adhesion. The levels of microRNA-155, VCAM1 and ICAM1 were increased in sEV-treated hCMEC/D3 cells. Blocking the expression of VCAM1, but not of ICAM1, prevented sEV-mediated T-cell adhesion to brain endothelia. These results suggest that sEVs derived from inflamed BECs promote cerebrovascular dysfunction. These findings may provide new insights into the mechanisms involving neuroinflammatory disorders.

4.
PLoS One ; 16(6): e0252341, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34086733

RESUMEN

The ability to target therapeutic agents to specific tissues is an important element in the development of new disease treatments. The transferrin receptor (TfR) is one potential target for drug delivery, as it expressed on many dividing cells and on brain endothelium, the key cellular component of the blood-brain barrier. The aim of this study was to compare a set of new and previously-described polypeptides for their ability to bind to brain endothelium, and investigate their potential for targeting therapeutic agents to the CNS. Six polypeptides were ranked for their rate of endocytosis by the human brain endothelial cell line hCMEC/D3 and the murine line bEnd.3. One linear polypeptide and two cyclic polypeptides showed high rates of uptake. These peptides were investigated to determine whether serum components, including transferrin itself affected uptake by the endothelium. One of the cyclic peptides was strongly inhibited by transferrin and the other cyclic peptide weakly inhibited. As proof of principle the linear peptide was attached to 2nm glucose coated gold-nanoparticles, and the rate of uptake of the nanoparticles measured in a hydrogel model of the blood-brain barrier. Attachment of the TfR-targeting polypeptide significantly increased the rates of endocytosis by brain endothelium and increased movement of nanoparticles across the cells.


Asunto(s)
Portadores de Fármacos/metabolismo , Oro/metabolismo , Nanopartículas del Metal/administración & dosificación , Péptidos/metabolismo , Receptores de Transferrina/metabolismo , Animales , Transporte Biológico/fisiología , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Línea Celular , Sistemas de Liberación de Medicamentos/métodos , Endocitosis/fisiología , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Humanos , Ratones , Transferrina/metabolismo
5.
Nanomedicine (Lond) ; 16(9): 709-720, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33851537

RESUMEN

Aim: The aim of the study was to determine how the addition of a DNA oligonucleotide cargo to 3-nm gold glyconanoparticles would affect tissue distribution. Methods: Gold glyconanoparticles with 1-6 covalently bound oligonucleotides (40 nt dsDNA) were injected into rats and allowed to circulate for 10 min. Organs were harvested and gold quantitated by inductively coupled plasma mass spectrometry. Cellular localization of the nanocarriers was determined by electron microscopy. Results & conclusion: Addition of DNA cargo to the nanocarriers prevented localization in the kidney but increased localization in liver hepatocytes and splenic macrophages. There was no significant change in heart, lung or brain. DNA increases the size and adds a strong negative charge to the nanoparticles, which radically affects tissue distribution.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Animales , Oro/metabolismo , Hígado/metabolismo , Oligonucleótidos , Ratas , Distribución Tisular
6.
Neurobiol Aging ; 101: 273-284, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33579556

RESUMEN

Blood-brain barrier (BBB) breakdown occurs in aging and neurodegenerative diseases. Although age-associated alterations have previously been described, most studies focused in male brains; hence, little is known about BBB breakdown in females. This study measured ultrastructural features in the aging female BBB using transmission electron microscopy and 3-dimensional reconstruction of cortical and hippocampal capillaries from 6- and 24-month-old female C57BL/6J mice. Aged cortical capillaries showed more changes than hippocampal capillaries. Specifically, the aged cortex showed thicker basement membrane, higher number and volume of endothelial pseudopods, decreased endothelial mitochondrial number, larger pericyte mitochondria, higher pericyte-endothelial cell contact, and increased tight junction tortuosity compared with young animals. Only increased basement membrane thickness and pericyte mitochondrial volume were observed in the aged hippocampus. Regional comparison revealed significant differences in endothelial pseudopods and tight junctions between the cortex and hippocampus of 24-month-old mice. Therefore, the aging female BBB shows region-specific ultrastructural alterations that may lead to oxidative stress and abnormal capillary blood flow and barrier stability, potentially contributing to cerebrovascular diseases, particularly in postmenopausal women.


Asunto(s)
Envejecimiento/patología , Barrera Hematoencefálica/ultraestructura , Capilares/ultraestructura , Corteza Cerebral/irrigación sanguínea , Corteza Cerebral/ultraestructura , Hipocampo/irrigación sanguínea , Hipocampo/ultraestructura , Animales , Membrana Basal/patología , Membrana Basal/ultraestructura , Barrera Hematoencefálica/patología , Capilares/patología , Corteza Cerebral/patología , Femenino , Hipocampo/patología , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Tamaño Mitocondrial , Estrés Oxidativo , Pericitos/patología , Pericitos/ultraestructura , Posmenopausia
7.
Epigenomics ; 12(16): 1457-1476, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32938196

RESUMEN

Immunotherapies are revolutionizing the clinical management of a wide range of cancers. However, intrinsic or acquired unresponsiveness to immunotherapies does occur due to the dynamic cancer immunoediting which ultimately leads to immune escape. The evolutionarily conserved histone modifier enhancer of zeste 2 (EZH2) is aberrantly overexpressed in a number of human cancers. Accumulating studies indicate that EZH2 is a main driver of cancer cells' immunoediting and mediate immune escape through downregulating immune recognition and activation, upregulating immune checkpoints and creating an immunosuppressive tumor microenvironment. In this review, we overviewed the roles of EZH2 in cancer immunoediting, the preclinical and clinical studies of current pharmacologic EZH2 inhibitors and the prospects for EZH2 inhibitor and immunotherapy combination for cancer treatment.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Neoplasias/inmunología , Animales , Proteína Potenciadora del Homólogo Zeste 2/inmunología , Epigénesis Genética , Humanos , Inmunoterapia , Neoplasias/terapia , Escape del Tumor
8.
PLoS One ; 15(9): e0236611, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32941446

RESUMEN

Treatment of diseases that affect the CNS by gene therapy requires delivery of oligonucleotides to target cells within the brain. As the blood brain barrier prevents movement of large biomolecules, current approaches involve direct injection of the oligonucleotides, which is invasive and may have only a localised effect. The aim of this study was to investigate the potential of 2 nm galactose-coated gold nanoparticles (NP-Gal) as a delivery system of oligonucleotides across brain endothelium. DNA oligonucleotides of different types were attached to NP-Gal by the place exchange reaction and were characterised by EMSA (electrophoretic mobility shift assay). Several nanoparticle formulations were created, with single- or double-stranded (20nt or 40nt) DNA oligonucleotides, or with different amounts of DNA attached to the carriers. These nanocarriers were applied to transwell cultures of human brain endothelium in vitro (hCMEC/D3 cell-line) or to a 3D-hydrogel model of the blood-brain barrier including astrocytes. Transfer rates were measured by quantitative electron microscopy for the nanoparticles and qPCR for DNA. Despite the increase in nanoparticle size caused by attachment of oligonucleotides to the NP-Gal carrier, the rates of endocytosis and transcytosis of nanoparticles were both considerably increased when they carried an oligonucleotide cargo. Carriers with 40nt dsDNA were most efficient, accumulating in vesicles, in the cytosol and beneath the basal membrane of the endothelium. The oligonucleotide cargo remained attached to the nanocarriers during transcytosis and the transport rate across the endothelial cells was increased at least 50fold compared with free DNA. The nanoparticles entered the extracellular matrix and were taken up by the astrocytes in biologically functional amounts. Attachment of DNA confers a strong negative charge to the nanoparticles which may explain the enhanced binding to the endothelium and transcytosis by both vesicular transport and the transmembrane/cytosol pathway. These gold nanoparticles have the potential to transport therapeutic amounts of nucleic acids into the CNS.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Células Endoteliales/metabolismo , Nanopartículas del Metal/química , Oligodesoxirribonucleótidos/metabolismo , Astrocitos/metabolismo , Línea Celular , Células Cultivadas , Galactosa/química , Oro/química , Humanos , Oligodesoxirribonucleótidos/administración & dosificación
9.
Mol Pharm ; 16(5): 1999-2010, 2019 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-30865462

RESUMEN

Diseases affecting the central nervous system (CNS) should be regarded as a major health challenge due to the current lack of effective treatments given the hindrance to brain drug delivery imposed by the blood-brain barrier (BBB). Since efficient brain drug delivery should not solely rely on passive targeting, active targeting of nanomedicines into the CNS is being explored. The present study is devoted to the development of lipid nanocapsules (LNCs) decorated with nonpsychotropic cannabinoids as pioneering nonimmunogenic brain-targeting molecules and to the evaluation of their brain-targeting ability both in vitro and in vivo. Noticeably, both the permeability experiments across the hCMEC/D3 cell-based in vitro BBB model and the biodistribution experiments in mice consistently demonstrated that the highest brain-targeting ability was achieved with the smallest-sized cannabinoid-decorated LNCs. Importantly, the enhancement in brain targeting achieved with the conjugation of cannabidiol to LNCs outperformed by 6-fold the enhancement observed for the G-Technology (the main brain active strategy that has already entered clinical trials for the treatment of CNS diseases). As the transport efficiency across the BBB certainly determines the efficacy of the treatments for brain disorders, small cannabinoid-decorated LNCs represent auspicious platforms for the design and development of novel therapies for CNS diseases.


Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Cannabidiol/farmacología , Sistemas de Liberación de Medicamentos/métodos , Lípidos/química , Nanocápsulas/química , Nanoconjugados/química , Animales , Encefalopatías/tratamiento farmacológico , Cannabidiol/química , Cannabidiol/metabolismo , Permeabilidad Capilar/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos ICR , Nanomedicina/métodos , Distribución Tisular
10.
Int J Nanomedicine ; 13: 5577-5590, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30271148

RESUMEN

OBJECTIVE: The first aim of this study was to develop a nanocarrier that could transport the peroxisome proliferator-activated receptor agonist, pioglitazone (PGZ) across brain endothelium and examine the mechanism of nanoparticle transcytosis. The second aim was to determine whether these nanocarriers could successfully treat a mouse model of Alzheimer's disease (AD). METHODS: PGZ-loaded nanoparticles (PGZ-NPs) were synthesized by the solvent displacement technique, following a factorial design using poly (lactic-co-glycolic acid) polyethylene glycol (PLGA-PEG). The transport of the carriers was assessed in vitro, using a human brain endothelial cell line, cytotoxicity assays, fluorescence-tagged nanocarriers, fluorescence-activated cell sorting, confocal and transmission electron microscopy. The effectiveness of the treatment was assessed in APP/PS1 mice in a behavioral assay and by measuring the cortical deposition of ß-amyloid. RESULTS: Incorporation of PGZ into the carriers promoted a 50x greater uptake into brain endothelium compared with the free drug and the carriers showed a delayed release profile of PGZ in vitro. In the doses used, the nanocarriers were not toxic for the endothelial cells, nor did they alter the permeability of the blood-brain barrier model. Electron microscopy indicated that the nanocarriers were transported from the apical to the basal surface of the endothelium by vesicular transcytosis. An efficacy test carried out in APP/PS1 transgenic mice showed a reduction of memory deficit in mice chronically treated with PGZ-NPs. Deposition of ß-amyloid in the cerebral cortex, measured by immunohistochemistry and image analysis, was correspondingly reduced. CONCLUSION: PLGA-PEG nanocarriers cross brain endothelium by transcytosis and can be loaded with a pharmaceutical agent to effectively treat a mouse model of AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Modelos Animales de Enfermedad , Portadores de Fármacos/química , Nanopartículas/administración & dosificación , PPAR gamma/agonistas , Poliésteres/química , Polietilenglicoles/química , Tiazolidinedionas/administración & dosificación , Precursor de Proteína beta-Amiloide/genética , Animales , Barrera Hematoencefálica/efectos de los fármacos , Células Cultivadas , Humanos , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Técnicas In Vitro , Masculino , Trastornos de la Memoria/prevención & control , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Nanopartículas/química , Pioglitazona , Presenilina-1/genética , Tiazolidinedionas/química , Tiazolidinedionas/farmacología
11.
Sci Rep ; 7: 45284, 2017 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-28358058

RESUMEN

Leukocyte adhesion to brain endothelial cells, the blood-brain barrier main component, is a critical step in the pathogenesis of neuroinflammatory diseases such as multiple sclerosis (MS). Leukocyte adhesion is mediated mainly by selectins, cell adhesion molecules and chemokines induced by pro-inflammatory cytokines such as TNFα and IFNγ, but the regulation of this process is not fully clear. This study investigated the regulation of firm leukocyte adhesion to human brain endothelium by two different brain endothelial microRNAs (miRs), miR-126 and miR-126*, that are downregulated by TNFα and IFNγ in a human brain endothelial cell line, hCMEC/D3. Using a leukocyte adhesion in vitro assay under shear forces mimicking blood flow, we observed that reduction of endothelial miR-126 and miR-126* enhanced firm monocyte and T cell adhesion to hCMEC/D3 cells, whereas their increased expression partially prevented THP1, Jurkat and primary MS patient-derived PBMC firm adhesion. Furthermore, we observed that miR-126* and miR-126 downregulation increased E-selectin and VCAM1, respectively, while miR-126 overexpression reduced VCAM1 and CCL2 expression by hCMEC/D3 cells, suggesting that these miRs regulate leukocyte adhesion by modulating the expression of adhesion-associated endothelial mRNA targets. Hence, human brain endothelial miR-126 and miR-126* could be used as a therapeutic tool to reduce leukocyte adhesion and thus reduce neuroinflammation.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Moléculas de Adhesión Celular/genética , Leucocitos Mononucleares/citología , MicroARNs/genética , Esclerosis Múltiple/genética , Encéfalo/citología , Adhesión Celular , Línea Celular , Selectina E/genética , Endotelio/citología , Endotelio/metabolismo , Regulación de la Expresión Génica , Humanos , Interferón gamma/metabolismo , Células Jurkat , Leucocitos Mononucleares/metabolismo , Esclerosis Múltiple/inmunología , Resistencia al Corte , Células THP-1 , Factor de Necrosis Tumoral alfa/metabolismo , Molécula 1 de Adhesión Celular Vascular/genética
12.
PLoS One ; 11(8): e0161610, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27560685

RESUMEN

The selective entry of nanoparticles into target tissues is the key factor which determines their tissue distribution. Entry is primarily controlled by microvascular endothelial cells, which have tissue-specific properties. This study investigated the cellular properties involved in selective transport of gold nanoparticles (<5 nm) coated with PEG-amine/galactose in two different human vascular endothelia. Kidney endothelium (ciGENC) showed higher uptake of these nanoparticles than brain endothelium (hCMEC/D3), reflecting their biodistribution in vivo. Nanoparticle uptake and subcellular localisation was quantified by transmission electron microscopy. The rate of internalisation was approximately 4x higher in kidney endothelium than brain endothelium. Vesicular endocytosis was approximately 4x greater than cytosolic uptake in both cell types, and endocytosis was blocked by metabolic inhibition, whereas cytosolic uptake was energy-independent. The cellular basis for the different rates of internalisation was investigated. Morphologically, both endothelia had similar profiles of vesicles and cell volumes. However, the rate of endocytosis was higher in kidney endothelium. Moreover, the glycocalyces of the endothelia differed, as determined by lectin-binding, and partial removal of the glycocalyx reduced nanoparticle uptake by kidney endothelium, but not brain endothelium. This study identifies tissue-specific properties of vascular endothelium that affects their interaction with nanoparticles and rate of transport.


Asunto(s)
Endotelio Vascular/efectos de los fármacos , Oro/química , Nanopartículas del Metal/química , Animales , Transporte Biológico , Encéfalo/metabolismo , Citosol/metabolismo , Endocitosis , Células Endoteliales/metabolismo , Humanos , Riñón/metabolismo , Masculino , Microscopía Electrónica de Transmisión , Polietilenglicoles/química , Polisacáridos/química , Ratas , Ratas Wistar , Distribución Tisular
13.
Fluids Barriers CNS ; 13(1): 8, 2016 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-27246706

RESUMEN

BACKGROUND: Increased leukocyte adhesion to brain endothelial cells forming the blood-brain barrier (BBB) precedes extravasation into the central nervous system (CNS) in neuroinflammatory diseases such as multiple sclerosis (MS). Previously, we reported that microRNA-155 (miR-155) is up-regulated in MS and by inflammatory cytokines in human brain endothelium, with consequent modulation of endothelial paracellular permeability. Here, we investigated the role of endothelial miR-155 in leukocyte adhesion to the human cerebral microvascular endothelial cell line, hCMEC/D3, under shear forces mimicking blood flow in vivo. RESULTS: Using a gain- and loss-of-function approach, we show that miR-155 up-regulation increases leukocyte firm adhesion of both monocyte and T cells to hCMEC/D3 cells. Inhibition of endogenous endothelial miR-155 reduced monocytic and T cell firm adhesion to naïve and cytokines-induced human brain endothelium. Furthermore, this effect is partially associated with modulation of the endothelial cell adhesion molecules VCAM1 and ICAM1 by miR-155. CONCLUSIONS: Our results suggest that endothelial miR-155 contribute to the regulation of leukocyte adhesion at the inflamed BBB. Taken together with previous observations, brain endothelial miR-155 may constitute a potential molecular target for treatment of neuroinflammation diseases.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Adhesión Celular/fisiología , Células Endoteliales/metabolismo , MicroARNs/metabolismo , Monocitos/metabolismo , Linfocitos T/metabolismo , Línea Celular , Circulación Cerebrovascular/fisiología , Ensayo de Inmunoadsorción Enzimática , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Células Jurkat , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Modelos Cardiovasculares , Modelos Neurológicos , Neuroinmunomodulación/fisiología , Resistencia al Corte/fisiología , Transfección , Molécula 1 de Adhesión Celular Vascular/metabolismo
14.
Nanomedicine (Lond) ; 11(6): 617-25, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26911484

RESUMEN

AIM: To identify the localization of glucose-coated gold nanoparticles within cells of the brain after intravascular infusion which may point to the mechanism by which they cross the blood-brain barrier. MATERIALS & METHODS: Tissue distribution of the nanoparticles was measured by inductively-coupled-mass spectrometry and localization within the brain by histochemistry and electron microscopy. RESULTS & CONCLUSION: Nanoparticles were identified within neurons and glial cells more than 10 µm from the nearest microvessel within 10 min of intracarotid infusion. Their distribution indicated movement across the endothelial cytosol, and direct transfer between cells of the brain. The rapid movement of this class of nanoparticle (<5 nm) into the brain demonstrates their potential to carry therapeutic biomolecules or imaging reagents.


Asunto(s)
Encéfalo/metabolismo , Glucosa/química , Glucosa/farmacocinética , Oro/química , Oro/farmacocinética , Nanopartículas del Metal/química , Animales , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/ultraestructura , Encéfalo/citología , Encéfalo/ultraestructura , Glucosa/administración & dosificación , Oro/administración & dosificación , Masculino , Nanopartículas del Metal/administración & dosificación , Nanopartículas del Metal/análisis , Tamaño de la Partícula , Ratas Wistar , Distribución Tisular
15.
F1000Res ; 4: 1279, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26870320

RESUMEN

The aim of this study was to develop a three-dimensional (3D) model of the human blood-brain barrier in vitro, which mimics the cellular architecture of the CNS and could be used to analyse the delivery of nanoparticles to cells of the CNS. The model includes human astrocytes set in a collagen gel, which is overlaid by a monolayer of human brain endothelium (hCMEC/D3 cell line). The model was characterised by transmission electron microscopy (TEM), immunofluorescence microscopy and flow cytometry. A collagenase digestion method could recover the two cell types separately at 92-96% purity.  Astrocytes grown in the gel matrix do not divide and they have reduced expression of aquaporin-4 and the endothelin receptor, type B compared to two-dimensional cultures, but maintain their expression of glial fibrillary acidic protein. The effects of conditioned media from these astrocytes on the barrier phenotype of the endothelium was compared with media from astrocytes grown conventionally on a two-dimensional (2D) substratum. Both induce the expression of tight junction proteins zonula occludens-1 and claudin-5 in hCMEC/D3 cells, but there was no difference between the induced expression levels by the two media. The model has been used to assess the transport of glucose-coated 4nm gold nanoparticles and for leukocyte migration. TEM was used to trace and quantitate the movement of the nanoparticles across the endothelium and into the astrocytes. This blood-brain barrier model is very suitable for assessing delivery of nanoparticles and larger biomolecules to cells of the CNS, following transport across the endothelium.

16.
J Cereb Blood Flow Metab ; 35(3): 412-23, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25515214

RESUMEN

Pro-inflammatory cytokine-induced activation of nuclear factor, NF-κB has an important role in leukocyte adhesion to, and subsequent migration across, brain endothelial cells (BECs), which is crucial for the development of neuroinflammatory disorders such as multiple sclerosis (MS). In contrast, microRNA-146a (miR-146a) has emerged as an anti-inflammatory molecule by inhibiting NF-κB activity in various cell types, but its effect in BECs during neuroinflammation remains to be evaluated. Here, we show that miR-146a was upregulated in microvessels of MS-active lesions and the spinal cord of mice with experimental autoimmune encephalomyelitis. In vitro, TNFα and IFNγ treatment of human cerebral microvascular endothelial cells (hCMEC/D3) led to upregulation of miR-146a. Brain endothelial overexpression of miR-146a diminished, whereas knockdown of miR-146a augmented cytokine-stimulated adhesion of T cells to hCMEC/D3 cells, nuclear translocation of NF-κB, and expression of adhesion molecules in hCMEC/D3 cells. Furthermore, brain endothelial miR-146a modulates NF-κB activity upon cytokine activation through targeting two novel signaling transducers, RhoA and nuclear factor of activated T cells 5, as well as molecules previously identified, IL-1 receptor-associated kinase 1, and TNF receptor-associated factor 6. We propose brain endothelial miR-146a as an endogenous NF-κB inhibitor in BECs associated with decreased leukocyte adhesion during neuroinflammation.


Asunto(s)
Encefalomielitis Autoinmune Experimental/genética , Células Endoteliales/metabolismo , MicroARNs/metabolismo , Esclerosis Múltiple/genética , FN-kappa B/metabolismo , Linfocitos T/citología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Adhesión Celular/genética , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Femenino , Humanos , Inmunohistoquímica , Hibridación in Situ , Inflamación , Captura por Microdisección con Láser , Masculino , Ratones , Persona de Mediana Edad , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Linfocitos T/inmunología , Transfección
17.
FASEB J ; 28(6): 2551-65, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24604078

RESUMEN

Blood-brain barrier (BBB) dysfunction is a hallmark of neurological conditions such as multiple sclerosis (MS) and stroke. However, the molecular mechanisms underlying neurovascular dysfunction during BBB breakdown remain elusive. MicroRNAs (miRNAs) have recently emerged as key regulators of pathogenic responses, although their role in central nervous system (CNS) microvascular disorders is largely unknown. We have identified miR-155 as a critical miRNA in neuroinflammation at the BBB. miR-155 is expressed at the neurovascular unit of individuals with MS and of mice with experimental autoimmune encephalomyelitis (EAE). In mice, loss of miR-155 reduced CNS extravasation of systemic tracers, both in EAE and in an acute systemic inflammation model induced by lipopolysaccharide. In cultured human brain endothelium, miR-155 was strongly and rapidly upregulated by inflammatory cytokines. miR-155 up-regulation mimicked cytokine-induced alterations in junctional organization and permeability, whereas inhibition of endogenous miR-155 partially prevented a cytokine-induced increase in permeability. Furthermore, miR-155 modulated brain endothelial barrier function by targeting not only cell-cell complex molecules such as annexin-2 and claudin-1, but also focal adhesion components such as DOCK-1 and syntenin-1. We propose that brain endothelial miR-155 is a negative regulator of BBB function that may constitute a novel therapeutic target for CNS neuroinflammatory disorders.


Asunto(s)
Barrera Hematoencefálica/fisiología , MicroARNs/fisiología , Animales , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/fisiopatología , Humanos , Masculino , Ratones , Esclerosis Múltiple , Talina/biosíntesis , Transcriptoma , Regulación hacia Arriba , Vinculina/biosíntesis
18.
PLoS One ; 8(12): e81043, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24339894

RESUMEN

The blood-brain barrier prevents the entry of many therapeutic agents into the brain. Various nanocarriers have been developed to help agents to cross this barrier, but they all have limitations, with regard to tissue-selectivity and their ability to cross the endothelium. This study investigated the potential for 4 nm coated gold nanoparticles to act as selective carriers across human brain endothelium and subsequently to enter astrocytes. The transfer rate of glucose-coated gold nanoparticles across primary human brain endothelium was at least three times faster than across non-brain endothelia. Movement of these nanoparticles occurred across the apical and basal plasma membranes via the cytosol with relatively little vesicular or paracellular migration; antibiotics that interfere with vesicular transport did not block migration. The transfer rate was also dependent on the surface coating of the nanoparticle and incubation temperature. Using a novel 3-dimensional co-culture system, which includes primary human astrocytes and a brain endothelial cell line hCMEC/D3, we demonstrated that the glucose-coated nanoparticles traverse the endothelium, move through the extracellular matrix and localize in astrocytes. The movement of the nanoparticles through the matrix was >10 µm/hour and they appeared in the nuclei of the astrocytes in considerable numbers. These nanoparticles have the correct properties for efficient and selective carriers of therapeutic agents across the blood-brain barrier.


Asunto(s)
Astrocitos/metabolismo , Encéfalo/citología , Encéfalo/metabolismo , Glucosa/química , Oro/química , Oro/metabolismo , Nanopartículas del Metal/química , Transporte Biológico , Barrera Hematoencefálica/metabolismo , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Portadores de Fármacos/toxicidad , Endotelio/metabolismo , Oro/toxicidad , Humanos , Espacio Intracelular/metabolismo
19.
Fluids Barriers CNS ; 10(1): 27, 2013 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-24050303

RESUMEN

BACKGROUND: The human cerebral microvascular endothelial cell line, hCMEC/D3, has been used extensively to model the blood-brain barrier (BBB) in vitro. Recently, we reported that cytokine-treatment induced loss of brain endothelial barrier properties. In this study, we further determined the gene expression pattern of hCMEC/D3 cells in response to activation with TNFα and IFNγ. FINDINGS: Using a microarray approach, we observed that expression of genes involved in the control of barrier permeability, including inter-brain endothelial junctions (e.g. claudin-5, MARVELD-2), integrin-focal adhesions complexes (e.g. integrin ß1, ELMO-1) and transporter systems (e.g. ABCB1, SLC2A1), are altered by pro-inflammatory cytokines. CONCLUSIONS: Our study shows that previously-described cytokine-induced changes in the pattern of gene expression of endothelium are reproduced in hCMEC/D3 cells, suggesting that this model is suitable to study inflammation at the BBB, while at the same time it has provided insights into novel key molecular processes that are altered in brain endothelium during neuroinflammation, such as modulation of cell-to-matrix contacts.

20.
PLoS One ; 7(10): e48189, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23133566

RESUMEN

The ATP-binding cassette (ABC) transporter ABCB1, encoded by the multidrug resistance gene MDR1, is expressed on brain microvascular endothelium and several types of epithelium, but not on endothelia outside the CNS. It is an essential component of the blood-brain barrier. The aim of this study was to identify cell-specific controls on the transcription of MDR1 in human brain endothelium. Reporter assays identified a region of 500 bp around the transcription start site that was optimally active in brain endothelium. Chromatin immunoprecipitation identified Sp3 and TFIID associated with this region and EMSA (electrophoretic mobility shift assays) confirmed that Sp3 binds preferentially to an Sp-target site (GC-box) on the MDR1 promoter in brain endothelium. This result contrasts with findings in other cell types and with the colon carcinoma line Caco-2, in which Sp1 preferentially associates with the MDR1 promoter. Differences in MDR1 transcriptional control between brain endothelium and Caco-2 could not be explained by the relative abundance of Sp1:Sp3 nor by the ratio of Sp3 variants, because activating variants of Sp3 were present in both cell types. However differential binding of other transcription factors was also detected in two additional upstream regions of the MDR1 promoter. Identification of cell-specific controls on the transcription of MDR1 indicates that it may be possible to modulate multi-drug resistance on tumours, while leaving the blood brain barrier intact.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Regulación de la Expresión Génica , Factor de Transcripción Sp3/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Barrera Hematoencefálica , Células CACO-2 , Línea Celular Tumoral , Separación Celular , Células Endoteliales/citología , Endotelio Vascular/citología , Citometría de Flujo , Humanos , Inmunohistoquímica/métodos , Microscopía Fluorescente/métodos , Regiones Promotoras Genéticas , Unión Proteica , Factor de Transcripción TFIID/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA