Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Nat Commun ; 15(1): 7111, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39160153

RESUMEN

In-depth multiomic phenotyping provides molecular insights into complex physiological processes and their pathologies. Here, we report on integrating 18 diverse deep molecular phenotyping (omics-) technologies applied to urine, blood, and saliva samples from 391 participants of the multiethnic diabetes Qatar Metabolomics Study of Diabetes (QMDiab). Using 6,304 quantitative molecular traits with 1,221,345 genetic variants, methylation at 470,837 DNA CpG sites, and gene expression of 57,000 transcripts, we determine (1) within-platform partial correlations, (2) between-platform mutual best correlations, and (3) genome-, epigenome-, transcriptome-, and phenome-wide associations. Combined into a molecular network of > 34,000 statistically significant trait-trait links in biofluids, our study portrays "The Molecular Human". We describe the variances explained by each omics in the phenotypes (age, sex, BMI, and diabetes state), platform complementarity, and the inherent correlation structures of multiomics data. Further, we construct multi-molecular network of diabetes subtypes. Finally, we generated an open-access web interface to "The Molecular Human" ( http://comics.metabolomix.com ), providing interactive data exploration and hypotheses generation possibilities.


Asunto(s)
Fenotipo , Humanos , Masculino , Femenino , Metabolómica/métodos , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Metilación de ADN , Transcriptoma , Persona de Mediana Edad , Estudio de Asociación del Genoma Completo , Qatar/epidemiología , Epigenoma , Adulto , Islas de CpG/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Multiómica
2.
Sci Rep ; 14(1): 11886, 2024 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789534

RESUMEN

The E3 ubiquitin-ligase UHRF1 is an epigenetic regulator coordinating DNA methylation and histone modifications. However, little is known about how it regulates adipogenesis or metabolism. In this study, we discovered that UHRF1 is a key regulatory factor for adipogenesis, and we identified the altered molecular pathways that UHRF1 targets. Using CRISPR/Cas9-based knockout strategies, we discovered the whole transcriptomic changes upon UHRF1 deletion. Bioinformatics analyses revealed that key adipogenesis regulators such PPAR-γ and C/EBP-α were suppressed, whereas TGF-ß signaling and fibrosis markers were upregulated in UHRF1-depleted differentiating adipocytes. Furthermore, UHRF1-depleted cells showed upregulated expression and secretion of TGF-ß1, as well as the glycoprotein GPNMB. Treating differentiating preadipocytes with recombinant GPNMB led to an increase in TGF-ß protein and secretion levels, which was accompanied by an increase in secretion of fibrosis markers such as MMP13 and a reduction in adipogenic conversion potential. Conversely, UHRF1 overexpression studies in human cells demonstrated downregulated levels of GPNMB and TGF-ß, and enhanced adipogenic potential. In conclusion, our data show that UHRF1 positively regulates 3T3-L1 adipogenesis and limits fibrosis by suppressing GPNMB and TGF-ß signaling cascade, highlighting the potential relevance of UHRF1 and its targets to the clinical management of obesity and linked metabolic disorders.


Asunto(s)
Adipogénesis , Glicoproteínas de Membrana , Transducción de Señal , Ubiquitina-Proteína Ligasas , Animales , Humanos , Ratones , Células 3T3-L1 , Adipocitos/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/genética , Diferenciación Celular , Proteínas del Ojo/metabolismo , Proteínas del Ojo/genética , Fibrosis , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Factor de Crecimiento Transformador beta/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética
3.
BMC Med Genomics ; 16(1): 301, 2023 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-37996899

RESUMEN

BACKGROUND: Bardet-Biedl syndrome (BBS) is an autosomal recessive, genetically heterogeneous, pleiotropic disorder caused by variants in genes involved in the function of the primary cilium. We have harnessed genomics to identify BBS and ophthalmic technologies to describe novel features of BBS. CASE PRESENTATION: A patient with an unclear diagnosis of syndromic type 2 diabetes mellitus, another affected sibling and unaffected siblings and parents were sequenced using DNA extracted from saliva samples. Corneal confocal microscopy (CCM) and retinal spectral domain optical coherence tomography (SD-OCT) were used to identify novel ophthalmic features in these patients. The two affected individuals had a homozygous variant in C8orf37 (p.Trp185*). SD-OCT and CCM demonstrated a marked and patchy reduction in the retinal nerve fiber layer thickness and loss of corneal nerve fibers, respectively. CONCLUSION: This report highlights the use of ophthalmic imaging to identify novel retinal and corneal abnormalities that extend the phenotype of BBS in a patient with syndromic type 2 diabetes.


Asunto(s)
Síndrome de Bardet-Biedl , Diabetes Mellitus Tipo 2 , Humanos , Síndrome de Bardet-Biedl/complicaciones , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/diagnóstico , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Retina , Fenotipo , Fibras Nerviosas , Mutación , Proteínas/genética
4.
Plant Genome ; 16(4): e20373, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37621134

RESUMEN

Date palm (Phoenix dactylifera) fruit (dates) are an economically and culturally significant crop in the Middle East and North Africa. There are hundreds of different commercial cultivars producing dates with distinctive shapes, colors, and sizes. Genetic studies of some date palm traits have been performed, including sex determination, sugar content, and fresh fruit color. In this study, we used genome sequences and image data of 199 dry dates (Tamar) collected from 14 countries to identify genetic loci associated with the color of this fruit stage. Here, we find loci across multiple linkage groups (LG) associated with dry fruit color phenotype. We recover both the previously identified VIRESCENS (VIR) genotype associated with fresh fruit yellow or red color and new associations with the lightness and darkness of dry fruit. This study will add resolution to our understanding of date color phenotype, especially at the most commercially important Tamar stage.


Asunto(s)
Phoeniceae , Phoeniceae/genética , Estudio de Asociación del Genoma Completo , Genotipo , Fenotipo
5.
Cancer Cell Int ; 22(1): 376, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36457029

RESUMEN

BACKGROUND: Colon cancer is often driven by mutations of the adenomatous polyposis coli (APC) gene, an essential tumor suppressor gene of the Wnt ß-catenin signaling pathway. APC and its cytoplasmic interactions have been well studied. However, various groups have also observed its presence in the nucleus. Identifying novel interactions of APC in the Wnt pathway will provide an opportunity to understand APC's nuclear role better and ultimately identify potential cancer treatment targets. METHODS: We used the all-vs-all sequencing (AVA-Seq) method to interrogate the interactome of protein fragments spanning most of the 60 Wnt ß-catenin pathway proteins. Using protein fragments identified the interacting regions between the proteins with more resolution than a full-length protein approach. Pull-down assays were used to validate a subset of these interactions. RESULTS: 74 known and 703 novel Wnt ß-catenin pathway protein-protein interactions were recovered in this study. There were 8 known and 31 novel APC protein-protein interactions. Novel interactions of APC and nuclear transcription factors TCF7, JUN, FOSL1, and SOX17 were particularly interesting and confirmed in validation assays. CONCLUSION: Based on our findings of novel interactions between APC and transcription factors and previous evidence of APC localizing to the nucleus, we suggest APC may compete and repress CTNNB1. This would occur through APC binding to the transcription factors (JUN, FOSL1, TCF7) to regulate the Wnt signaling pathway including through enhanced marking of CTNNB1 for degradation in the nucleus by APC binding with SOX17. Additional novel Wnt ß-catenin pathway protein-protein interactions from this study could lead researchers to novel drug designs for cancer.

6.
J Transl Med ; 20(1): 526, 2022 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-36371196

RESUMEN

BACKGROUND: COVID-19 infections could be complicated by acute respiratory distress syndrome (ARDS), increasing mortality risk. We sought to assess the methylome of peripheral blood mononuclear cells in COVID-19 with ARDS. METHODS: We recruited 100 COVID-19 patients with ARDS under mechanical ventilation and 33 non-COVID-19 controls between April and July 2020. COVID-19 patients were followed at four time points for 60 days. DNA methylation and immune cell populations were measured at each time point. A multivariate cox proportional risk regression analysis was conducted to identify predictive signatures according to survival. RESULTS: The comparison of COVID-19 to controls at inclusion revealed the presence of a 14.4% difference in promoter-associated CpGs in genes that control immune-related pathways such as interferon-gamma and interferon-alpha responses. On day 60, 24% of patients died. The inter-comparison of baseline DNA methylation to the last recorded time point in both COVID-19 groups or the intra-comparison between inclusion and the end of follow-up in every group showed that most changes occurred as the disease progressed, mainly in the AIM gene, which is associated with an intensified immune response in those who recovered. The multivariate Cox proportional risk regression analysis showed that higher methylation of the "Apoptotic execution Pathway" genes (ROC1, ZNF789, and H1F0) at inclusion increases mortality risk by over twofold. CONCLUSION: We observed an epigenetic signature of immune-related genes in COVID-19 patients with ARDS. Further, Hypermethylation of the apoptotic execution pathway genes predicts the outcome. TRIAL REGISTRATION: IMRPOVIE study, NCT04473131.


Asunto(s)
COVID-19 , Síndrome de Dificultad Respiratoria , Humanos , COVID-19/complicaciones , COVID-19/genética , Metilación de ADN/genética , Leucocitos Mononucleares , Respiración Artificial , Síndrome de Dificultad Respiratoria/complicaciones , Síndrome de Dificultad Respiratoria/genética , SARS-CoV-2
7.
Environ Technol Innov ; 27: 102775, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35761926

RESUMEN

The apparent uncertainty associated with shedding patterns, environmental impacts, and sample processing strategies have greatly influenced the variability of SARS-CoV-2 concentrations in wastewater. This study evaluates the use of a new normalization approach using human RNase P for the logic estimation of SARS-CoV-2 viral load in wastewater. SARS-CoV-2 variants outbreak was monitored during the circulating wave between February and August 2021. Sewage samples were collected from five major wastewater treatment plants and subsequently analyzed to determine the viral loads in the wastewater. SARS-CoV-2 was detected in all the samples where the wastewater Ct values exhibited a similar trend as the reported number of new daily positive cases in the country. The infected population number was estimated using a mathematical model that compensated for RNA decay due to wastewater temperature and sewer residence time, and which indicated that the number of positive cases circulating in the population declined from 765,729 ± 142,080 to 2,303 ± 464 during the sampling period. Genomic analyses of SARS-CoV-2 of thirty wastewater samples collected between March 2021 and April 2021 revealed that alpha (B.1.1.7) and beta (B.1.351) were among the dominant variants of concern (VOC) in Qatar. The findings of this study imply that the normalization of data allows a more realistic assessment of incidence trends within the population.

8.
Cancer Med ; 11(24): 4989-5000, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35567389

RESUMEN

OBJECTIVE: Identify protein contact points between TP53 and minichromosome maintenance (MCM) complex proteins 2, 3, and 5 with high resolution allowing for potential novel Cancer drug design. METHODS: A next-generation sequencing-based protein-protein interaction method developed in our laboratory called AVA-Seq was applied to a gold-standard human protein interaction set. Proteins including TP53, MCM2, MCM3, MCM5, HSP90AA1, PCNA, NOD1, and others were sheared and ligated into the AVA-Seq system. Protein-protein interactions were then identified in both mild and stringent selective conditions. RESULTS: Known interactions among MCM2, MCM3, and MCM5 were identified with the AVA-Seq system. The interacting regions detected between these three proteins overlap with the structural data of the MCM complex, and novel domains were identified with high resolution determined by multiple overlapping fragments. Fragments of wild type TP53 were shown to interact with MCM2, MCM3, and MCM5, and details on the location of the interactions were provided. Finally, a mini-network of known and novel cancer protein interactions was provided, which could have implications for fundamental changes in multiple cancers. CONCLUSION: We provide a high-resolution mini-interactome that could direct novel drug targets and implicate possible effects of specific cancer mutations.


Asunto(s)
Proteínas de Mantenimiento de Minicromosoma , Proteína p53 Supresora de Tumor , Humanos , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/genética , Proteínas de Mantenimiento de Minicromosoma/clasificación , Proteínas de Mantenimiento de Minicromosoma/genética , Neoplasias , Diseño de Fármacos
9.
J Transl Med ; 20(1): 244, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35619151

RESUMEN

BACKGROUND: Mutated and non-mutated genes interact to drive cancer growth and metastasis. While research has focused on understanding the impact of mutated genes on cancer biology, understanding non-mutated genes that are essential to tumor development could lead to new therapeutic strategies. The recent advent of high-throughput whole genome sequencing being applied to many different samples has made it possible to calculate if genes are significantly non-mutated in a specific cancer patient cohort. METHODS: We carried out random mutagenesis simulations of the human genome approximating the regions sequenced in the publicly available Cancer Growth Atlas Project for ovarian cancer (TCGA-OV). Simulated mutations were compared to the observed mutations in the TCGA-OV cohort and genes with the largest deviations from simulation were identified. Pathway analysis was performed on the non-mutated genes to better understand their biological function. We then compared gene expression, methylation and copy number distributions of non-mutated and mutated genes in cell lines and patient data from the TCGA-OV project. To directly test if non-mutated genes can affect cell proliferation, we carried out proof-of-concept RNAi silencing experiments of a panel of nine selected non-mutated genes in three ovarian cancer cell lines and one primary ovarian epithelial cell line. RESULTS: We identified a set of genes that were mutated less than expected (non-mutated genes) and mutated more than expected (mutated genes). Pathway analysis revealed that non-mutated genes interact in cancer associated pathways. We found that non-mutated genes are expressed significantly more than mutated genes while also having lower methylation and higher copy number states indicating that they could be functionally important. RNAi silencing of the panel of non-mutated genes resulted in a greater significant reduction of cell viability in the cancer cell lines than in the non-cancer cell line. Finally, as a test case, silencing ANKLE2, a significantly non-mutated gene, affected the morphology, reduced migration, and increased the chemotherapeutic response of SKOV3 cells. CONCLUSION: We show that we can identify significantly non-mutated genes in a large ovarian cancer cohort that are well-expressed in patient and cell line data and whose RNAi-induced silencing reduces viability in three ovarian cancer cell lines. Targeting non-mutated genes that are important for tumor growth and metastasis is a promising approach to expand cancer therapeutic options.


Asunto(s)
Neoplasias Ováricas , Secuencia de Bases , Carcinoma Epitelial de Ovario/genética , Femenino , Genoma , Humanos , Mutación/genética , Neoplasias Ováricas/genética
10.
NPJ Genom Med ; 7(1): 3, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35046417

RESUMEN

Risk genes for Mendelian (single-gene) disorders (SGDs) are consistent across populations, but pathogenic risk variants that cause SGDs are typically population-private. The goal was to develop "QChip1," an inexpensive genotyping microarray to comprehensively screen newborns, couples, and patients for SGD risk variants in Qatar, a small nation on the Arabian Peninsula with a high degree of consanguinity. Over 108 variants in 8445 Qatari were identified for inclusion in a genotyping array containing 165,695 probes for 83,542 known and potentially pathogenic variants in 3438 SGDs. QChip1 had a concordance with whole-genome sequencing of 99.1%. Testing of QChip1 with 2707 Qatari genomes identified 32,674 risk variants, an average of 134 pathogenic alleles per Qatari genome. The most common pathogenic variants were those causing homocystinuria (1.12% risk allele frequency), and Stargardt disease (2.07%). The majority (85%) of Qatari SGD pathogenic variants were not present in Western populations such as European American, South Asian American, and African American in New York City and European and Afro-Caribbean in Puerto Rico; and only 50% were observed in a broad collection of data across the Greater Middle East including Kuwait, Iran, and United Arab Emirates. This study demonstrates the feasibility of developing accurate screening tools to identify SGD risk variants in understudied populations, and the need for ancestry-specific SGD screening tools.

11.
Proteins ; 90(4): 959-972, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34850971

RESUMEN

Protein-protein interactions (PPIs) are essential in understanding numerous aspects of protein function. Here, we significantly scaled and modified analyses of the recently developed all-vs-all sequencing (AVA-Seq) approach using a gold-standard human protein interaction set (hsPRS-v2) containing 98 proteins. Binary interaction analyses recovered 20 of 47 (43%) binary PPIs from this positive reference set (PRS), comparing favorably with other methods. However, the increase of 20× in the interaction search space for AVA-Seq analysis in this manuscript resulted in numerous changes to the method required for future use in genome-wide interaction studies. We show that standard sequencing analysis methods must be modified to consider the possible recovery of thousands of positives among millions of tested interactions in a single sequencing run. The PRS data were used to optimize data scaling, auto-activator removal, rank interaction features (such as orientation and unique fragment pairs), and statistical cutoffs. Using these modifications to the method, AVA-Seq recovered >500 known and novel PPIs, including interactions between wild-type fragments of tumor protein p53 and minichromosome maintenance complex proteins 2 and 5 (MCM2 and MCM5) that could be of interest in human disease.


Asunto(s)
Genoma , Proteínas , Humanos , Proteínas/metabolismo
12.
Front Cell Infect Microbiol ; 11: 768883, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34869069

RESUMEN

Qatar, a country with a strong health system and a diverse population consisting mainly of expatriate residents, has experienced two large waves of COVID-19 outbreak. In this study, we report on 2634 SARS-CoV-2 whole-genome sequences from infected patients in Qatar between March-2020 and March-2021, representing 1.5% of all positive cases in this period. Despite the restrictions on international travel, the viruses sampled from the populace of Qatar mirrored nearly the entire global population's genomic diversity with nine predominant viral lineages that were sustained by local transmission chains and the emergence of mutations that are likely to have originated in Qatar. We reported an increased number of mutations and deletions in B.1.1.7 and B.1.351 lineages in a short period. These findings raise the imperative need to continue the ongoing genomic surveillance that has been an integral part of the national response to monitor the SARS-CoV-2 profile and re-emergence in Qatar.


Asunto(s)
COVID-19 , SARS-CoV-2 , Brotes de Enfermedades , Genómica , Humanos , Qatar/epidemiología
13.
PLoS Med ; 18(12): e1003879, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34914711

RESUMEN

BACKGROUND: The epidemiology of the SARS-CoV-2 B.1.1.7 (or Alpha) variant is insufficiently understood. This study's objective was to describe the introduction and expansion of this variant in Qatar and to estimate the efficacy of natural infection against reinfection with this variant. METHODS AND FINDINGS: Reinfections with the B.1.1.7 variant and variants of unknown status were investigated in a national cohort of 158,608 individuals with prior PCR-confirmed infections and a national cohort of 42,848 antibody-positive individuals. Infections with B.1.1.7 and variants of unknown status were also investigated in a national comparator cohort of 132,701 antibody-negative individuals. B.1.1.7 was first identified in Qatar on 25 December 2020. Sudden, large B.1.1.7 epidemic expansion was observed starting on 18 January 2021, triggering the onset of epidemic's second wave, 7 months after the first wave. B.1.1.7 was about 60% more infectious than the original (wild-type) circulating variants. Among persons with a prior PCR-confirmed infection, the efficacy of natural infection against reinfection was estimated to be 97.5% (95% CI: 95.7% to 98.6%) for B.1.1.7 and 92.2% (95% CI: 90.6% to 93.5%) for variants of unknown status. Among antibody-positive persons, the efficacy of natural infection against reinfection was estimated to be 97.0% (95% CI: 92.5% to 98.7%) for B.1.1.7 and 94.2% (95% CI: 91.8% to 96.0%) for variants of unknown status. A main limitation of this study is assessment of reinfections based on documented PCR-confirmed reinfections, but other reinfections could have occurred and gone undocumented. CONCLUSIONS: In this study, we observed that introduction of B.1.1.7 into a naïve population can create a major epidemic wave, but natural immunity in those previously infected was strongly associated with limited incidence of reinfection by B.1.1.7 or other variants.


Asunto(s)
COVID-19/epidemiología , COVID-19/virología , Reinfección/epidemiología , Reinfección/virología , SARS-CoV-2 , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Número Básico de Reproducción , Niño , Femenino , Humanos , Inmunidad Innata , Masculino , Persona de Mediana Edad , Modelos Teóricos , Reacción en Cadena de la Polimerasa , Qatar/epidemiología , Estudios Retrospectivos , Factores de Tiempo , Adulto Joven
14.
Int J Mol Sci ; 22(11)2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-34199764

RESUMEN

Pre-mRNA splicing is an essential step in gene expression and is catalyzed by two machineries in eukaryotes: the major (U2 type) and minor (U12 type) spliceosomes. While the majority of introns in humans are U2 type, less than 0.4% are U12 type, also known as minor introns (mi-INTs), and require a specialized spliceosome composed of U11, U12, U4atac, U5, and U6atac snRNPs. The high evolutionary conservation and apparent splicing inefficiency of U12 introns have set them apart from their major counterparts and led to speculations on the purpose for their existence. However, recent studies challenged the simple concept of mi-INTs splicing inefficiency due to low abundance of their spliceosome and confirmed their regulatory role in alternative splicing, significantly impacting the expression of their host genes. Additionally, a growing list of minor spliceosome-associated diseases with tissue-specific pathologies affirmed the importance of minor splicing as a key regulatory pathway, which when deregulated could lead to tissue-specific pathologies due to specific alterations in the expression of some minor-intron-containing genes. Consequently, uncovering how mi-INTs splicing is regulated in a tissue-specific manner would allow for better understanding of disease pathogenesis and pave the way for novel therapies, which we highlight in this review.


Asunto(s)
Enfermedad/genética , Intrones/genética , Empalme del ARN/genética , Animales , Evolución Molecular , Humanos , Especificidad de Órganos/genética , Empalmosomas/metabolismo
15.
Nat Med ; 27(9): 1614-1621, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34244681

RESUMEN

The SARS-CoV-2 pandemic continues to be a global health concern. The mRNA-1273 (Moderna) vaccine was reported to have an efficacy of 94.1% at preventing symptomatic COVID-19 due to infection with 'wild-type' variants in a randomized clinical trial. Here, we assess the real-world effectiveness of this vaccine against SARS-CoV-2 variants of concern, specifically B.1.1.7 (Alpha) and B.1.351 (Beta), in Qatar, a population that comprises mainly working-age adults, using a matched test-negative, case-control study design. We show that vaccine effectiveness was negligible for 2 weeks after the first dose, but increased rapidly in the third and fourth weeks immediately before administration of a second dose. Effectiveness against B.1.1.7 infection was 88.1% (95% confidence interval (CI): 83.7-91.5%) ≥14 days after the first dose but before the second dose, and was 100% (95% CI: 91.8-100.0%) ≥14 days after the second dose. Analogous effectiveness against B.1.351 infection was 61.3% after the first dose (95% CI: 56.5-65.5%) and 96.4% after the second dose (95% CI: 91.9-98.7%). Effectiveness against any severe, critical or fatal COVID-19 disease due to any SARS-CoV-2 infection (predominantly B.1.1.7 and B.1.351) was 81.6% (95% CI: 71.0-88.8%) and 95.7% (95% CI: 73.4-99.9%) after the first and second dose, respectively. The mRNA-1273 vaccine is highly effective against B.1.1.7 and B.1.351 infections, whether symptomatic or asymptomatic, and against any COVID-19 hospitalization and death, even after a single dose.


Asunto(s)
COVID-19/epidemiología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Vacuna nCoV-2019 mRNA-1273 , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Antivirales/sangre , COVID-19/inmunología , Vacunas contra la COVID-19/inmunología , Estudios de Casos y Controles , Femenino , Genoma Viral/genética , Humanos , Masculino , Persona de Mediana Edad , Qatar/epidemiología , Adulto Joven
16.
EClinicalMedicine ; 35: 100861, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33937733

RESUMEN

BACKGROUND: Reinfection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been documented, raising public health concerns. SARS-CoV-2 reinfections were assessed in a cohort of antibody-positive persons in Qatar. METHODS: All SARS-CoV-2 antibody-positive persons from April 16 to December 31, 2020 with a PCR-positive swab ≥14 days after the first-positive antibody test were investigated for evidence of reinfection. Viral genome sequencing was conducted for paired viral specimens to confirm reinfection. Incidence of reinfection was compared to incidence of infection in the complement cohort of those who were antibody-negative. FINDINGS: Among 43,044 antibody-positive persons who were followed for a median of 16.3 weeks (range: 0-34.6), 314 individuals (0.7%) had at least one PCR positive swab ≥14 days after the first-positive antibody test. Of these individuals, 129 (41.1%) had supporting epidemiological evidence for reinfection. Reinfection was next investigated using viral genome sequencing. Applying the viral-genome-sequencing confirmation rate, the incidence rate of reinfection was estimated at 0.66 per 10,000 person-weeks (95% CI: 0.56-0.78). Incidence rate of reinfection versus month of follow-up did not show any evidence of waning of immunity for over seven months of follow-up. Meanwhile, in the complement cohort of 149,923 antibody-negative persons followed for a median of 17.0 weeks (range: 0-45.6), incidence rate of infection was estimated at 13.69 per 10,000 person-weeks (95% CI: 13.22-14.14). Efficacy of natural infection against reinfection was estimated at 95.2% (95% CI: 94.1-96.0%). Reinfections were less severe than primary infections. Only one reinfection was severe, two were moderate, and none were critical or fatal. Most reinfections (66.7%) were diagnosed incidentally through random or routine testing, or through contact tracing. INTERPRETATION: Reinfection is rare in the young and international population of Qatar. Natural infection appears to elicit strong protection against reinfection with an efficacy ~95% for at least seven months. FUNDING: Biomedical Research Program, the Biostatistics, Epidemiology, and Biomathematics Research Core, and the Genomics Core, all at Weill Cornell Medicine-Qatar, the Ministry of Public Health, Hamad Medical Corporation, and the Qatar Genome Programme.

17.
Front Plant Sci ; 12: 634901, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33959137

RESUMEN

The genus Phoenix includes the fruit producing date palm tree among 14 species that are all dioecious. Females produce the fruit that are high in sugar content and used in multiple countries ranging from North Africa to South Asia, especially from the Phoenix dactylifera, Phoenix sylvestris, and Phoenix canariensis species. While females produce the fruit, understanding of the genetic basis of sex control only began recently. Through genus-wide sequencing of males and females we recently identified three genes that are conserved in all males and absent in all females of the genus and confirmed an XY sex chromosome system. While our previous study focused on conservation of male-specific sequences at the genus-level, it would be of interest to better understand the spread of male-specific sequences away from the core conserved male genes on the Y chromosome during speciation. To this end, we enumerated male-specific 16 bp sequences using three male/female pairs from the western subpopulation of date palm and documented the density of these sequences in contigs of a phased date palm genome assembly. Here we show that male specific sequences in the date palm Y chromosome have likely spread in defined events that appear as blocks of varying density with significant changes in density between them. Collinearity of genes in these blocks with oil palm shows high synteny with chromosome 10 between megabase 15 and 23 and reveals that large sections of the date palm Y chromosome have maintained the ancestral structure even as recombination has stopped between X and Y.

19.
PLoS One ; 16(4): e0249930, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33857204

RESUMEN

Kidney transplantation is the treatment of choice for patients with end-stage kidney failure, but transplanted allograft could be affected by viral and bacterial infections and by immune rejection. The standard test for the diagnosis of acute pathologies in kidney transplants is kidney biopsy. However, noninvasive tests would be desirable. Various methods using different techniques have been developed by the transplantation community. But these methods require improvements. We present here a cost-effective method for kidney rejection diagnosis that estimates donor/recipient-specific DNA fraction in recipient urine by sequencing urinary cell DNA. We hypothesized that in the no-pathology stage, the largest tissue types present in recipient urine are donor kidney cells, and in case of rejection, a larger number of recipient immune cells would be observed. Extensive in-silico simulation was used to tune the sequencing parameters: number of variants and depth of coverage. Sequencing of DNA mixture from 2 healthy individuals showed the method is highly predictive (maximum error < 0.04). We then demonstrated the insignificant impact of familial relationship and ethnicity using an in-house and public database. Lastly, we performed deep DNA sequencing of urinary cell pellets from 32 biopsy-matched samples representing two pathology groups: acute rejection (AR, 11 samples) and acute tubular injury (ATI, 12 samples) and 9 samples with no pathology. We found a significant association between the donor/recipient-specific DNA fraction in the two pathology groups compared to no pathology (P = 0.0064 for AR and P = 0.026 for ATI). We conclude that deep DNA sequencing of urinary cells from kidney allograft recipients offers a noninvasive means of diagnosing acute pathologies in the human kidney allograft.


Asunto(s)
ADN/química , Secuenciación de Nucleótidos de Alto Rendimiento , Trasplante de Riñón , Adulto , Anciano , Anciano de 80 o más Años , Algoritmos , Estudios de Casos y Controles , ADN/orina , Bases de Datos Genéticas , Femenino , Rechazo de Injerto/diagnóstico , Humanos , Riñón/patología , Fallo Renal Crónico/terapia , Trasplante de Riñón/efectos adversos , Masculino , Persona de Mediana Edad , Análisis de Secuencia de ADN , Donantes de Tejidos , Trasplante Homólogo , Orina/citología
20.
Front Cell Dev Biol ; 9: 595156, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33816459

RESUMEN

Circular RNAs were once considered artifacts of transcriptome sequencing but have recently been identified as functionally relevant in different types of cancer. Although there is still no clear main function of circRNAs, several studies have revealed that circRNAs are expressed in various eukaryotic organisms in a regulated manner often independent of their parental linear isoforms demonstrating conservation across species. circNFATC3, an abundant and uncharacterized circular RNA of exon 2 and 3 from NFATC3, was identified in transcriptomic data of solid tumors. Here we show that circNFATC3 gain- and loss-of-function experiments using RNAi-mediated circRNA silencing and circular mini vector-mediated overexpression of circularized constructs in breast and ovarian cancer cell lines affect molecular phenotypes. The knockdown of circNFATC3 induces a reduction in cell proliferation, invasion, migration, and oxidative phosphorylation. Gain-of-function of circNFATC3 in MDA-MB-231 and SK-OV-3 cells show a significant increase in cell proliferation, migration, and respiration. The above results suggest that circNFATC3 is a functionally relevant circular RNA in breast and ovarian cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA