Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Psychol Rev ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39298227

RESUMEN

The efficient representation of visual information is essential for learning and decision making due to the complexity and uncertainty of the world, as well as inherent constraints on the capacity of cognitive systems. We hypothesize that biological agents learn to efficiently represent visual information in a manner that balances performance across multiple potentially competing objectives. In this article, we examine two such objectives: storing information in a manner that supports accurate recollection (maximizing veridicality) and in a manner that facilitates utility-based decision making (maximizing behavioral utility). That these two objectives may be in conflict is not immediately obvious. Our hypothesis suggests that neither behavior nor representation formation can be fully understood by studying either in isolation, with information processing constraints exerting an overarching influence. Alongside this hypothesis we develop a computational model of representation formation and behavior motivated by recent methods in machine learning and neuroscience. The resulting model explains both the beneficial aspects of human visual learning, such as fast acquisition and high generalization, as well as the biases that result from information constraints. To test this model, we developed two experimental paradigms, in decision making and learning, to evaluate how well the model's predictions match human behavior. A key feature of the proposed model is that it predicts the occurrence of commonly found biases in human decision making, resulting from the desire to form efficient representations of visual information that are useful for behavioral goals in learning and decision making and optimized under an information processing constraint. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

2.
Front Psychol ; 15: 1387948, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38765837

RESUMEN

Introduction: Generative Artificial Intelligence has made significant impacts in many fields, including computational cognitive modeling of decision making, although these applications have not yet been theoretically related to each other. This work introduces a categorization of applications of Generative Artificial Intelligence to cognitive models of decision making. Methods: This categorization is used to compare the existing literature and to provide insight into the design of an ablation study to evaluate our proposed model in three experimental paradigms. These experiments used for model comparison involve modeling human learning and decision making based on both visual information and natural language, in tasks that vary in realism and complexity. This comparison of applications takes as its basis Instance-Based Learning Theory, a theory of experiential decision making from which many models have emerged and been applied to a variety of domains and applications. Results: The best performing model from the ablation we performed used a generative model to both create memory representations as well as predict participant actions. The results of this comparison demonstrates the importance of generative models in both forming memories and predicting actions in decision-modeling research. Discussion: In this work, we present a model that integrates generative and cognitive models, using a variety of stimuli, applications, and training methods. These results can provide guidelines for cognitive modelers and decision making researchers interested in integrating Generative AI into their methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA