Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Transl Psychiatry ; 12(1): 66, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35177588

RESUMEN

The 1.6 Mb 3q29 deletion is associated with developmental and psychiatric phenotypes, including a 40-fold increased risk for schizophrenia. Reduced birth weight and a high prevalence of feeding disorders in patients suggest underlying metabolic dysregulation. We investigated 3q29 deletion-induced metabolic changes using our previously generated heterozygous B6.Del16+/Bdh1-Tfrc mouse model. Animals were provided either standard chow (STD) or high-fat diet (HFD). Growth curves were performed on HFD mice to assess weight change (n = 30-50/group). Indirect calorimetry and untargeted metabolomics were performed on STD and HFD mice to evaluate metabolic phenotypes (n = 8-14/group). A behavioral battery was performed on STD and HFD mice to assess behavior change after the HFD challenge (n = 5-13/group). We found that B6.Del16+/Bdh1-Tfrc animals preferentially use dietary lipids as an energy source. Untargeted metabolomics of liver tissue showed a strong sex-dependent effect of the 3q29 deletion on fat metabolism. A HFD partially rescued the 3q29 deletion-associated weight deficit in females, but not males. Untargeted metabolomics of liver tissue after HFD revealed persistent fat metabolism alterations in females. The HFD did not affect B6.Del16+/Bdh1-Tfrc behavioral phenotypes, suggesting that 3q29 deletion-associated metabolic and behavioral outcomes are uncoupled. Our data suggest that dietary interventions to improve weight phenotypes in 3q29 deletion syndrome patients are unlikely to exacerbate behavioral manifestations. Our study also highlights the importance of assessing sex in metabolic studies and suggests that mechanisms underlying 3q29 deletion-associated metabolic phenotypes are sex-specific.


Asunto(s)
Discapacidad Intelectual , Esquizofrenia , Animales , Niño , Deleción Cromosómica , Discapacidades del Desarrollo/genética , Dieta Alta en Grasa , Femenino , Humanos , Discapacidad Intelectual/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Fenotipo , Esquizofrenia/complicaciones , Esquizofrenia/genética
2.
Mol Psychiatry ; 26(3): 772-783, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-30976085

RESUMEN

The 3q29 deletion confers increased risk for neuropsychiatric phenotypes including intellectual disability, autism spectrum disorder, generalized anxiety disorder, and a >40-fold increased risk for schizophrenia. To investigate consequences of the 3q29 deletion in an experimental system, we used CRISPR/Cas9 technology to introduce a heterozygous deletion into the syntenic interval on C57BL/6 mouse chromosome 16. mRNA abundance for 20 of the 21 genes in the interval was reduced by ~50%, while protein levels were reduced for only a subset of these, suggesting a compensatory mechanism. Mice harboring the deletion manifested behavioral impairments in multiple domains including social interaction, cognitive function, acoustic startle, and amphetamine sensitivity, with some sex-dependent manifestations. In addition, 3q29 deletion mice showed reduced body weight throughout development consistent with the phenotype of 3q29 deletion syndrome patients. Of the genes within the interval, DLG1 has been hypothesized as a contributor to the neuropsychiatric phenotypes. However, we show that Dlg1+/- mice did not exhibit the behavioral deficits seen in mice harboring the full 3q29 deletion. These data demonstrate the following: the 3q29 deletion mice are a valuable experimental system that can be used to interrogate the biology of 3q29 deletion syndrome; behavioral manifestations of the 3q29 deletion may have sex-dependent effects; and mouse-specific behavior phenotypes associated with the 3q29 deletion are not solely due to haploinsufficiency of Dlg1.


Asunto(s)
Trastorno del Espectro Autista , Discapacidad Intelectual , Esquizofrenia , Animales , Niño , Deleción Cromosómica , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Discapacidades del Desarrollo/genética , Modelos Animales de Enfermedad , Humanos , Discapacidad Intelectual/genética , Ratones , Ratones Endogámicos C57BL , Fenotipo , Esquizofrenia/genética
3.
Am J Hum Genet ; 85(4): 503-14, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19804849

RESUMEN

Fragile X syndrome (FXS) results from a CGG-repeat expansion that triggers hypermethylation and silencing of the FMR1 gene. FXS is referred to as the most common form of inherited intellectual disability, yet its true incidence has never been measured directly by large population screening. Here, we developed an inexpensive and high-throughput assay to quantitatively assess FMR1 methylation in DNA isolated from the dried blood spots of 36,124 deidentified newborn males. This assay displays 100% specificity and 100% sensitivity for detecting FMR1 methylation, successfully distinguishing normal males from males with full-mutation FXS. Furthermore, the assay can detect excess FMR1 methylation in 82% of females with full mutations, although the methylation did not correlate with intellectual disability. With amelogenin PCR used for detecting the presence of a Y chromosome, this assay can also detect males with Klinefelter syndrome (KS) (47, XXY). We identified 64 males with FMR1 methylation and, after confirmatory testing, found seven to have full-mutation FXS and 57 to have KS. Because the precise incidence of KS is known, we used our observed KS incidence as a sentinel to assess ascertainment quality and showed that our KS incidence of 1 in 633 newborn males was not significantly different from the literature incidence of 1 in 576 (p = 0.79). The seven FXS males revealed an FXS incidence in males of 1 in 5161 (95% confidence interval of 1 in 10,653-1 in 2500), consistent with some earlier indirect estimates. Given the trials now underway for possible FXS treatments, this method could be used in newborn or infant screening as a way of ensuring early interventions for FXS.


Asunto(s)
Metilación de ADN , ADN/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/diagnóstico , Síndrome del Cromosoma X Frágil/epidemiología , Síndrome del Cromosoma X Frágil/genética , Tamizaje Neonatal/métodos , Secuencia de Bases , Análisis Mutacional de ADN , Cartilla de ADN/química , Humanos , Recién Nacido , Síndrome de Klinefelter/diagnóstico , Síndrome de Klinefelter/genética , Masculino , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Sensibilidad y Especificidad , Homología de Secuencia de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...