Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
2.
Nutr Rev ; 81(2): 153-167, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35950956

RESUMEN

CONTEXT: Strenuous exercise may lead to negative acute physiological effects that can impair athletic performance. Some recent studies suggest that probiotic supplementation can curtail these effects by reducing the permeability of the intestinal barrier, yet results are inconsistent. OBJECTIVE: The aim of this systematic review is to assess the effects of probiotic supplementation on athletic performance. DATA SOURCES: The PubMed/MEDLINE, Cochrane, and Scopus databases were searched for articles that assessed the effects of probiotic supplementation on athletic performance. DATA EXTRACTION THIS SYSTEMATIC REVIEW IS REPORTED ACCORDING TO: PRISMA guidelines. Risk of bias was assessed through the Cochrane RoB 2.0 tool. Seventeen randomized clinical trials assessing athletic performance as the primary outcome were included. In total, 496 individuals (73% male) comprising athletes, recreationally trained individuals, and untrained healthy individuals aged 18 to 40 years were investigated. DATA ANALYSIS: Three studies showed an increase or an attenuation of aerobic performance (decline in time to exhaustion on the treadmill) after supplementation with probiotics, while 3 found an increase in strength. However, most studies (n = 11) showed no effect of probiotic consumption on aerobic performance (n = 9) or muscular strength (n = 2). The most frequently used strain was Lactobacillus acidophilus, used in 2 studies that observed positive results on performance. Studies that used Lactobacillus plantarum TK10 and Lactobacillus plantarum PS128 also demonstrated positive effects on aerobic performance and strength, but they had high risk of bias, which implies low confidence about the actual effect of treatment. CONCLUSION: There is not enough evidence to support the hypothesis that probiotics can improve performance in resistance and aerobic exercises. Further well-controlled studies are warranted.


Asunto(s)
Rendimiento Atlético , Probióticos , Humanos , Masculino , Femenino , Probióticos/uso terapéutico , Ejercicio Físico , Rendimiento Atlético/fisiología , Atletas , Fuerza Muscular
3.
Br J Neurosurg ; : 1-6, 2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34406102

RESUMEN

BACKGROUND: The piriform cortex (PC) occupies both banks of the endorhinal sulcus and has an important role in the pathophysiology of temporal lobe epilepsy (TLE). A recent study showed that resection of more than 50% of PC increased the odds of becoming seizure free by a factor of 16. OBJECTIVE: We report the feasibility of manual segmentation of PC and application of the Geodesic Information Flows (GIF) algorithm to automated segmentation, to guide resection. METHODS: Manual segmentation of PC was performed by two blinded independent examiners in 60 patients with TLE (55% Left TLE, 52% female) with a median age of 35 years (IQR, 29-47 years) and 20 controls (60% Women) with a median age of 39.5 years (IQR, 31-49). The GIF algorithm was used to create an automated pipeline for parcellating PC which was used to guide excision as part of temporal lobe resection for TLE. RESULTS: Right PC was larger in patients and controls. Parcellation of PC was used to guide anterior temporal lobe resection, with subsequent seizure freedom and no visual field or language deficit. CONCLUSION: Reliable segmentation of PC is feasible and can be applied prospectively to guide neurosurgical resection that increases the chances of a good outcome from temporal lobe resection for TLE.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA