Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 14(9)2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35565432

RESUMEN

Three murine glioma cell lines (GL261, CT2A, and ALTS1C1) were modified to downregulate the expression of the murine LDH-A gene using shRNA, and compared to shRNA scrambled control (NC) cell lines. Differences in the expression of LDH-A and LDH-B mRNA, protein and enzymatic activity, as well as their LDH isoenzyme profiles, were observed in the six cell lines, and confirmed successful LDH-A KD. LDH-A KD (knock-down) resulted in metabolic changes in cells with a reduction in glycolysis (GlycoPER) and an increase in basal respiratory rate (mitoOCR). GL261 cells had a more limited ATP production capacity compared to CT2A and ALTS1C1 cells. An analysis of mRNA expression data indicated that: (i) GL261 LDH-A KD cells may have an improved ability to metabolize lactate into the TCA cycle; and (ii) that GL261 LDH-A KD cells can upregulate lipid metabolism/fatty acid oxidation pathways, whereas the other glioma cell lines do not have this capacity. These two observations suggest that GL261 LDH-A KD cells can develop/activate alternative metabolic pathways for enhanced survival in a nutrient-limited environment, and that specific nutrient limitations have a variable impact on tumor cell metabolism and proliferation. The phenotypic effects of LDH-A KD were compared to those in control (NC) cells and tumors. LDH-A KD prolonged the doubling time of GL261 cells in culture and prevented the formation of subcutaneous flank tumors in immune-competent C57BL/6 mice, whereas GL261 NC tumors had a prolonged growth delay in C57BL/6 mice. In nude mice, both LDH-A KD and NC GL261 tumors grew rapidly (more rapidly than GL261 NC tumors in C57BL/6 mice), demonstrating the impact of an intact immune system on GL261 tumor growth. No differences between NC and KD cell proliferation (in vitro) or tumor growth in C57BL/6 mice (doubling time) were observed for CT2A and ALTS1C1 cells and tumors, despite the small changes to their LDH isoenzyme profiles. These results suggest that GL261 glioma cells (but not CT2A and ALTS1C1 cells) are pre-programmed to have the capacity for activating different metabolic pathways with higher TCA cycle activity, and that this capacity is enhanced by LDH-A depletion. We observed that the combined impact of LDH-A depletion and the immune system had a significant impact on the growth of subcutaneous-located GL261 tumors.

2.
Cancers (Basel) ; 14(9)2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35565435

RESUMEN

The effects of the LDH-A depletion via shRNA knockdown on three murine glioma cell lines and corresponding intracranial (i.c.) tumors were studied and compared to pharmacologic (GNE-R-140) inhibition of the LDH enzyme complex, and to shRNA scrambled control (NC) cell lines. The effects of genetic-shRNA LDH-A knockdown and LDH drug-targeted inhibition (GNE-R-140) on tumor-cell metabolism, tumor growth, and animal survival were similar. LDH-A KD and GNE-R-140 unexpectedly increased the aggressiveness of GL261 intracranial gliomas, but not CT2A and ALTS1C1 i.c. gliomas. Furthermore, the bioenergetic profiles (ECAR and OCR) of GL261 NC and LDH-A KD cells under different nutrient limitations showed that (a) exogenous pyruvate is not a major carbon source for metabolism through the TCA cycle of native GL261 cells; and (b) the unique upregulation of LDH-B that occurs in GL261 LDH-A KD cells results in these cells being better able to: (i) metabolize lactate as a primary carbon source through the TCA cycle, (ii) be a net consumer of lactate, and (iii) showed a significant increase in the proliferation rate following the addition of 10 mM lactate to the glucose-free media (only seen in GL261 KD cells). Our study suggests that inhibition of LDH-A/glycolysis may not be a general strategy to inhibit the i.c. growth of all gliomas, since the level of LDH-A expression and its interplay with LDH-B can lead to complex metabolic interactions between tumor cells and their environment. Metabolic-inhibition treatment strategies need to be carefully assessed, since the inhibition of glycolysis (e.g., inhibition of LDH-A) may lead to the unexpected development and activation of alternative metabolic pathways (e.g., upregulation of lipid metabolism and fatty-acid oxidation pathways), resulting in enhanced tumor-cell survival in a nutrient-limited environment and leading to increased tumor aggressiveness.

3.
Nature ; 591(7851): 652-658, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33588426

RESUMEN

Limiting metabolic competition in the tumour microenvironment may increase the effectiveness of immunotherapy. Owing to its crucial role in the glucose metabolism of activated T cells, CD28 signalling has been proposed as a metabolic biosensor of T cells1. By contrast, the engagement of CTLA-4 has been shown to downregulate T cell glycolysis1. Here we investigate the effect of CTLA-4 blockade on the metabolic fitness of intra-tumour T cells in relation to the glycolytic capacity of tumour cells. We found that CTLA-4 blockade promotes metabolic fitness and the infiltration of immune cells, especially in glycolysis-low tumours. Accordingly, treatment with anti-CTLA-4 antibodies improved the therapeutic outcomes of mice bearing glycolysis-defective tumours. Notably, tumour-specific CD8+ T cell responses correlated with phenotypic and functional destabilization of tumour-infiltrating regulatory T (Treg) cells towards IFNγ- and TNF-producing cells in glycolysis-defective tumours. By mimicking the highly and poorly glycolytic tumour microenvironments in vitro, we show that the effect of CTLA-4 blockade on the destabilization of Treg cells is dependent on Treg cell glycolysis and CD28 signalling. These findings indicate that decreasing tumour competition for glucose may facilitate the therapeutic activity of CTLA-4 blockade, thus supporting its combination with inhibitors of tumour glycolysis. Moreover, these results reveal a mechanism by which anti-CTLA-4 treatment interferes with Treg cell function in the presence of glucose.


Asunto(s)
Antígeno CTLA-4/antagonistas & inhibidores , Glucólisis , Neoplasias/inmunología , Neoplasias/metabolismo , Linfocitos T Reguladores/inmunología , Animales , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Melanoma/genética , Melanoma/inmunología , Melanoma/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
4.
Mol Ther Oncolytics ; 18: 382-395, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32913888

RESUMEN

To enhance human prostate-specific membrane antigen (hPSMA)-specific chimeric antigen receptor (CAR) T cell therapy in a hPSMA+ MyC-CaP tumor model, we studied and imaged the effect of lactate dehydrogenase A (LDH-A) depletion on the tumor microenvironment (TME) and tumor progression. Effective LDH-A short hairpin RNA (shRNA) knockdown (KD) was achieved in MyC-CaP:hPSMA+ Renilla luciferase (RLuc)-internal ribosome entry site (IRES)-GFP tumor cells, and changes in tumor cell metabolism and in the TME were monitored. LDH-A downregulation significantly inhibited cell proliferation and subcutaneous tumor growth compared to control cells and tumors. However, total tumor lactate concentration did not differ significantly between LDH-A knockdown and control tumors, reflecting the lower vascularity, blood flow, and clearance of lactate from LDH-A knockdown tumors. Comparing treatment responses of MyC-CaP tumors with LDH-A depletion and/or anti-hPSMA CAR T cells showed that the dominant effect on tumor growth was LDH-A depletion. With anti-hPSMA CAR T cell treatment, tumor growth was significantly slower when combined with tumor LDH-A depletion and compared to control tumor growth (p < 0.0001). The lack of a complete tumor response in our animal model can be explained in part by (1) the lower activity of human CAR T cells against hPSMA-expressing murine tumors in a murine host, and (2) a loss of hPSMA antigen from the tumor cell surface in progressive generations of tumor cells.

5.
Mol Imaging Biol ; 22(5): 1184-1196, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32239371

RESUMEN

PURPOSE: CXCR4 is one of several "chemokine" receptors expressed on malignant tumors (including GBM and PCNSL) and hematopoietic stem cells. Although 68Ga-pentixafor and 68Ga-NOTA-NFB have been shown to effectively image CXCR4 expression in myeloma and other systemic malignancies, imaging CXCR4 expression in brain tumors has been more limited due to the blood-brain barrier (BBB) and a considerable fraction of CXCR4 staining is intracellular. METHODS: We synthesized 6 iodinated and brominated cyclam derivatives with high affinity (low nM range) for CXCR4, since structure-based estimates of lipophilicity suggested rapid transfer across the BBB and tumor cell membranes. RESULTS: We tested 3 iodinated and 3 brominated cyclam derivatives in several CXCR4(+) and CXCR4(-) cell lines, with and without cold ligand blocking. To validate these novel radiolabeled cyclam derivatives for diagnostic CXCR4 imaging efficacy in brain tumors, we established appropriated murine models of intracranial GBM and PCNSL. Based on initial studies, 131I-HZ262 and 76Br-HZ270-1 were shown to be the most avidly accumulated radioligands. 76Br-HZ270-1 was selected for further study in the U87-CXCR4 and PCNSL #15 intracranial tumor models, because of its high uptake (9.5 ± 1.3 %ID/g, SD) and low non-specific uptake (1.6 ± 0.7 %ID/g, SD) in the s.c. U87-CXCR4 tumor models. However, imaging CXCR4 expression in intracranial U87-CXCR4 and PCNSL #15 tumors with 76Br-HZ270-1 was unsuccessful, following either i.v. or spinal-CSF injection. CONCLUSIONS: Imaging CXCR4 expression with halogenated cyclam derivatives was successful in s.c. located tumors, but not in CNS located tumors. This was largely due to the following: (i) the hydrophilicity of the radiolabeled analogues-as reflected in the "measured" radiotracer distribution (LogD) in octanol/PBS-which stands in contrast to the structure-based estimate of LogP, which was the rationale for initiating the study and (ii) the presence of a modest BTB in intracranial U87-CXCR4 gliomas and an intact BBB/BTB in the intracranial PCNSL animal model.


Asunto(s)
Bromo/química , Ciclamas/química , Halogenación , Yodo/química , Receptores CXCR4/metabolismo , Animales , Línea Celular Tumoral , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Ratones Endogámicos C57BL , Ratones Desnudos , Tomografía de Emisión de Positrones , Receptores CXCR4/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Distribución Tisular/efectos de los fármacos
6.
PLoS One ; 13(9): e0203965, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30248111

RESUMEN

Previous studies show that LDH-A knockdown reduces orthotopic 4T1 breast tumor lactate and delays tumor growth and the development of metastases in nude mice. Here, we report significant changes in the tumor microenvironment (TME) and a more robust anti-tumor response in immune competent BALB/c mice. 4T1 murine breast cancer cells were transfected with shRNA plasmids directed against LDH-A (KD) or a scrambled control plasmid (NC). Cells were also transduced with dual luciferase-based reporter systems to monitor HIF-1 activity and the development of metastases by bioluminescence imaging, using HRE-sensitive and constitutive promoters, respectively. The growth and metastatic profile of orthotopic 4T1 tumors developed from these cell lines were compared and a primary tumor resection model was studied to simulate the clinical management of breast cancer. Primary tumor growth, metastasis formation and TME phenotype were significantly different in LDH-A KD tumors compared with controls. In LDH-A KD cells, HIF-1 activity, hexokinase 1 and 2 expression and VEGF secretion were reduced. Differences in the TME included lower HIF-1α expression that correlated with lower vascularity and pimonidazole staining, higher infiltration of CD3+ and CD4+ T cells and less infiltration of TAMs. These changes resulted in a greater delay in metastases formation and 40% long-term survivors (>20 weeks) in the LDH-A KD cohort following surgical resection of the primary tumor. We show for the first time that LDH-depletion inhibits the formation of metastases and prolongs survival of mice through changes in tumor microenvironment that modulate the immune response. We attribute these effects to diminished HIF-1 activity, vascularization, necrosis formation and immune suppression in immune competent animals. Gene-expression analyses from four human breast cancer datasets are consistent with these results, and further demonstrate the link between glycolysis and immune suppression in breast cancer.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Neoplasias Mamarias Experimentales/inmunología , Neoplasias Mamarias Experimentales/metabolismo , Microambiente Tumoral/inmunología , Microambiente Tumoral/fisiología , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/genética , Isoenzimas/metabolismo , L-Lactato Deshidrogenasa/antagonistas & inhibidores , L-Lactato Deshidrogenasa/genética , Lactato Deshidrogenasa 5 , Ácido Láctico/metabolismo , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Metástasis de la Neoplasia/inmunología , Metástasis de la Neoplasia/patología , Neovascularización Patológica , Transducción de Señal
7.
Mol Ther Oncolytics ; 4: 41-54, 2017 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-28345023

RESUMEN

Chimeric antigen receptor (CAR) T cell therapy in hematologic malignancies has shown remarkable responses, but the same level of success has not been observed in solid tumors. A new prostate cancer model (Myc-CaP:PSMA(+)) and a second-generation anti-hPSMA human CAR T cells expressing a Click Beetle Red luciferase reporter) were used to study hPSMA targeting and assess CAR T cell trafficking and persistence by bioluminescence imaging (BLI). We investigated the antitumor efficacy of human CAR T cells targeting human prostate-specific membrane antigen (hPSMA), in the presence and absence of the target antigen; first alone and then combined with a monoclonal antibody targeting the human programmed death receptor 1 (anti-hPD1 mAb). PDL-1 expression was detected in Myc-CaP murine prostate tumors growing in immune competent FVB/N and immune-deficient SCID mice. Endogenous CD3+ T cells were restricted from the centers of Myc-CaP tumor nodules growing in FVB/N mice. Following anti-programmed cell death protein 1 (PD-1) treatment, the restriction of CD3+ T cells was reversed, and a tumor-treatment response was observed. Adoptive hPSMA-CAR T cell immunotherapy was enhanced when combined with PD-1 blockade, but the treatment response was of comparatively short duration, suggesting other immune modulation mechanisms exist and restrict CAR T cell targeting, function, and persistence in hPSMA expressing Myc-CaP tumors. Interestingly, an "inverse pattern" of CAR T cell BLI intensity was observed in control and test tumors, which suggests CAR T cells undergo changes leading to a loss of signal and/or number following hPSMA-specific activation. The lower BLI signal intensity in the hPSMA test tumors (compared with controls) is due in part to a decrease in T cell mitochondrial function following T cell activation, which may limit the intensity of the ATP-dependent Luciferin-luciferase bioluminescence signal.

8.
Clin Imaging ; 38(6): 864-7, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24679651

RESUMEN

Primary thyroid lymphoma is a rare thyroid tumor accounting for only 5% of all thyroid malignancies. It is more common in patients with a background history of chronic thyroiditis. PET/CT is helpful in the initial staging and for follow up to assess treatment response.


Asunto(s)
Enfermedad de Hashimoto/complicaciones , Linfoma/diagnóstico , Imagen Multimodal/métodos , Tomografía de Emisión de Positrones/métodos , Neoplasias de la Tiroides/diagnóstico , Tomografía Computarizada por Rayos X/métodos , Adulto , Humanos , Linfoma/complicaciones , Linfoma/tratamiento farmacológico , Masculino , Glándula Tiroides/diagnóstico por imagen , Neoplasias de la Tiroides/complicaciones , Neoplasias de la Tiroides/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA