Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomed Mater Eng ; 35(4): 387-399, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38968040

RESUMEN

BACKGROUND: Polymeric electrospun mats have been used as scaffolds in tissue engineering for the development of novel materials due to its characteristics. The usage of synthetic materials has gone in decline due to environmental problems associated with their synthesis and waste disposal. Biomaterials such as biopolymers have been used recently due to good compatibility on biological applications and sustainability. OBJECTIVE: The purpose of this work is to obtain novel materials based on synthetic and natural polymers for applications on tissue engineering. METHODS: Aloe vera mucilage was obtained, chemically characterized, and used as an active compound contained in electrospun mats. Polymeric scaffolds were obtained in single, coaxial and tri-layer structures, characterized and evaluated in cell culture. RESULTS: Mucilage loaded electrospun fibers showed good compatibility due to formation of hydrogen bonds between polymers and biomolecules from its structure, evidenced by FTIR spectra and thermal properties. Cell viability test showed that most of the obtained mats result on viability higher than 75%, resulting in nontoxic materials, ready to be used on scaffolding applications. CONCLUSION: Mucilage containing fibers resulted on materials with potential use on scaffolding applications due to their mechanical performance and cell viability results.


Asunto(s)
Aloe , Supervivencia Celular , Gelatina , Mucílago de Planta , Poliésteres , Ingeniería de Tejidos , Andamios del Tejido , Poliésteres/química , Ingeniería de Tejidos/métodos , Gelatina/química , Andamios del Tejido/química , Supervivencia Celular/efectos de los fármacos , Aloe/química , Mucílago de Planta/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Ensayo de Materiales , Humanos , Membranas Artificiales , Animales
2.
Materials (Basel) ; 12(15)2019 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-31357530

RESUMEN

The high flame-retardant loading required for ethylene-vinyl acetate copolymer blends with polyethylene (EVA-PE) employed for insulation and sheathing of electric cables represents a significant limitation in processability and final mechanical properties. In this work, melamine triazine (TRZ) and modified bentonite clay have been investigated in combination with aluminum trihydroxide (ATH) for the production of EVA-PE composites with excellent fire safety and improved mechanical properties. Optimized formulations with only 120 parts per hundred resin (phr) of ATH can achieve self-extinguishing behavior according to the UL94 classification (V0 rating), as well as reduced combustion kinetics and smoke production. Mechanical property evaluation shows reduced stiffness and improved elongation at break with respect to commonly employed EVA-PE/ATH composites. The reduction in filler content also provides improved processability and cost reductions. The results presented here allow for a viable and halogen-free strategy for the preparation of high performing EVA-PE composites.

3.
Colloids Surf B Biointerfaces ; 167: 397-406, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29702471

RESUMEN

In this work, we prepared a novel composite based on hybrid gelatin carriers and montmorillonite clay (MMT) to analyze its viability as controlled drug delivery system. The objective of this research involves the characterization of composites formed by structured lipid-gelatin micro-particles (MP) and MMT clay. This analysis included the evaluation of the composite according to its rheological properties, morphology (SEM), particle size, XRD, FT-IR, and in vitro drug release. The effect of pH in the properties of the composite is evaluated. A novel raspberry-like or armor MP/MMT clay composite is reported, in which the pH has an important effect on the final structure of the composite for ad-hoc drug delivery systems. For pH values below the isoelectric point, we obtained defined morphologies with entrapment efficiencies up to 67%. The pH level controls the MP/MMT composite release mechanism, restringing drug release in the stomach-like environment. Intended for oral administration, these results evidence that the MP/MMT composite represents an attractive alternative for intestinal-colonic controlled drug delivery systems.


Asunto(s)
Atorvastatina/química , Bentonita/química , Preparaciones de Acción Retardada/química , Nanocompuestos/química , Atorvastatina/administración & dosificación , Atorvastatina/farmacocinética , Preparaciones de Acción Retardada/administración & dosificación , Preparaciones de Acción Retardada/farmacocinética , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Concentración de Iones de Hidrógeno , Microscopía Electrónica de Rastreo , Nanocompuestos/ultraestructura , Tamaño de la Partícula , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
4.
Eur Phys J E Soft Matter ; 40(2): 20, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28236110

RESUMEN

In this contribution a methodology to compute and classify shear-induced structural and phase transitions in surfactant/water mixtures from rheological measurements is presented. Non-linear rheological experiments, considering variations in surfactant concentration and temperature, are analyzed. In particular, the parameters of the BMP (Bautista-Manero-Puig) model, obtained from the fitting of the shear stress versus shear rate data, which are functions of surfactant concentration and temperature, allow classifying structural and phase transition boundaries. To test this methodology, we consider the analysis of the shear-induced structural and phase transitions of two micellar systems, cetyltrimethylammonium tosylate (CTAT)/water as a function of CTAT concentrations and Pluronics P103/water as a function of temperature. We found that the CTAT/water system presents a first-order phase transition at 30 ° C, and around 31 to 32 wt.% from isotropic to nematic phases, whereas a 20 wt.% Pluronics P103 aqueous micellar solution has two second-order (structural) phase transitions, one from spherical to cylindrical micelles at 33.1 ° C, and another one from cylindrical micelles to a nematic phase at 35.8 ° C and one first-order phase transition around 37.9 ° C at high shear rates near to the cloud point previously reported. The proposed methodology is also able to identify the instability regions where the wormlike micelles are broken, producing the typical shear banding behavior.

5.
J Phys Chem B ; 113(50): 16101-9, 2009 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-19924843

RESUMEN

The shear-banding flow in polymer-like micellar solutions is examined here with the generalized Bautista-Manero-Puig model. The coupling between flow and diffusion naturally arises in this model, which is derived from the extended irreversible thermodynamic formalism. The limit of an abrupt interface is treated here. The model predicts a dynamic master steady-flow diagram, in which all data collapse at low shear rates. Moreover, the model predicts that a nonequilibrium critical line is reached upon decreasing the shear-banding intensity parameter of the model, which corresponds to increasing temperature, increasing surfactant concentration, or varying salt-to-surfactant concentration ratio. By employing nonequilibrium critical theory and the concept of dissipated energy (or extended Gibbs free energy), a set of symmetrical reduced stress versus reduced shear-rate curves are obtained similar to gas-liquid transitions around the critical point. In addition, the nonequilibrium critical exponents are derived, which follow the extended Widom's rule and the extended Rushbroke relationship, but they are nonclassical.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA