Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 4(11): eaat9744, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30498779

RESUMEN

Formation of new aerosol particles from trace gases is a major source of cloud condensation nuclei (CCN) in the global atmosphere, with potentially large effects on cloud optical properties and Earth's radiative balance. Controlled laboratory experiments have resolved, in detail, the different nucleation pathways likely responsible for atmospheric new particle formation, yet very little is known from field studies about the molecular steps and compounds involved in different regions of the atmosphere. The scarcity of primary particle sources makes secondary aerosol formation particularly important in the Antarctic atmosphere. Here, we report on the observation of ion-induced nucleation of sulfuric acid and ammonia-a process experimentally investigated by the CERN CLOUD experiment-as a major source of secondary aerosol particles over coastal Antarctica. We further show that measured high sulfuric acid concentrations, exceeding 107 molecules cm-3, are sufficient to explain the observed new particle growth rates. Our findings show that ion-induced nucleation is the dominant particle formation mechanism, implying that galactic cosmic radiation plays a key role in new particle formation in the pristine Antarctic atmosphere.

2.
Science ; 352(6289): 1109-12, 2016 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-27226488

RESUMEN

New particle formation (NPF) is the source of over half of the atmosphere's cloud condensation nuclei, thus influencing cloud properties and Earth's energy balance. Unlike in the planetary boundary layer, few observations of NPF in the free troposphere exist. We provide observational evidence that at high altitudes, NPF occurs mainly through condensation of highly oxygenated molecules (HOMs), in addition to taking place through sulfuric acid-ammonia nucleation. Neutral nucleation is more than 10 times faster than ion-induced nucleation, and growth rates are size-dependent. NPF is restricted to a time window of 1 to 2 days after contact of the air masses with the planetary boundary layer; this is related to the time needed for oxidation of organic compounds to form HOMs. These findings require improved NPF parameterization in atmospheric models.

3.
Environ Sci Technol ; 43(13): 4715-21, 2009 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-19673256

RESUMEN

Gas to particle conversion in the boundary layer occurs worldwide. Sulfuric acid is considered to be one of the key components in these new particle formation events. In this study we explore the connection between measured sulfuric acid and observed formation rate of both charged 2 nm as well as neutral clusters in a boreal forest environment A very short time delay of the order of ten minutes between these two parameters was detected. On average the event days were clearly associated with higher sulfuric acid concentrations and lower condensation sink (CS) values than the nonevent days. Although there was not a clear sharp boundary between the nucleation and no-nucleation days in sulfuric acid-CS plane, at our measurement site a typical threshold concentration of 3.10(5) molecules cm(-3) of sulfuric acid was needed to initiate the new particle formation. Two proposed nucleation mechanisms were tested. Our results are somewhat more in favor of activation type nucleation than of kinetic type nucleation, even though our data set is too limited to omit either of these two mechanisms. In line with earlier studies, the atmospheric nucleation seems to start from sizes very close to 2 nm.


Asunto(s)
Monitoreo del Ambiente/métodos , Ácidos Sulfúricos/análisis , Árboles , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Atmósfera , Contaminantes Ambientales , Finlandia , Iones , Cinética , Tamaño de la Partícula , Ácidos Sulfúricos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...